Читаем без скачивания О чем рассказывает свет - Сергей Суворов
Шрифт:
Интервал:
Закладка:
Белопольский задумался: не расскажут ли нам о движении звезд по лучу зрения звездные спектры? Эта идея была не случайной. Она была основана на сравнении световых явлений со звуковыми.
Представьте себе, что вы стоите у железнодорожного полотна и мимо вас со свистом проносится поезд. Пока поезд приближается, свист так резок, что вам хочется заткнуть уши. Но вот поезд поравнялся с вами и удаляется. Резкий свист сразу сменяется более низким, спокойным гудком. Почему тон свистка выше, когда поезд приближается, и почему он ниже при удалении поезда? Физики давно изучили это явление. Если источник звука, например, свисток, находится в покое, вокруг него равномерно распространяются звуковые волны, т. е. чередующиеся друг с другом сгущения и разрежения воздуха. Где бы ни стоял человек, к его уху волны будут приходить с одинаковой частотой. Но если свистящий паровоз движется, то картина меняется. Впереди него волны сгущаются, как бы набегая друг на друга (рис. 22). Сгущения и разрежения воздуха становятся чаще. Значит, частота воздушных волн изменяется, увеличивается, а длина волны укорачивается.
Рис. 21. Перемещение звезды вдоль луча зрения глазом не отмечается
Рис. 22. Звуковые волны сгущаются впереди движущегося источника и разрежаются позади него
Это и воспринимается ухом как повышение тона свистка: чем больше частота звуковой волны, тем выше звук. Позади уходящего поезда картина обратная: волны отстают друг от друга, и расстояние между отдельными сгущениями и разрежениями увеличивается. Значит, увеличивается длина волны, уменьшается частота. Это воспринимается ухом как понижение тона.
Стало быть, высота тона или длина волны зависят от того, находится ли источник звука в покое или же он движется в какую-нибудь стороьу.
Эту зависимость установил пражский математик Допплер в 1842 году. Положение, формулирующее эту зависимость, называется принципом Допплера.
Допплер полагал, что этот принцип приложим и к свету, хотя проверить это в то время еще не могли. Ход его мысли был таков: раз свет, как и звук, распространяется волнами, то длина световых волн, приходящих на Землю от движущейся звезды, должна меняться. Можно вычислить, что если звезда удаляется от нас со скоростью, равной одной десятитысячной доле скорости света (т. е. 30 километрам в секунду), то все световые волны, испускаемые ею, должны удлиняться на одну десятитысячную долю первоначальной величины. Возьмем пример. Предположим, что в составе звезды находится литий. Мы уже знаем, что литий испускает излучения с длинами волн 6708Å (красная линия в спектре) и 6108Å (оранжевая линия). Если эта звезда удаляется от Земли, то длины волн света, посылаемого литием, будут увеличиваться: вместо длины волн 6708Å мы измерим длину волн 6708,67Å, а вместо волны 6108Å придет волна 6108,61Å. Ясно, что при другой скорости удаления звезды длины волн получили бы другое увеличение. Если звезда приближается, то длины волн должны, наоборот, укорачиваться.
При удалении звезды все линии звездного спектра сдвинутся в сторону длинных волн, при приближении — в сторону коротких. Или иначе: звезда, движущаяся на нас, немного «голубеет», а удаляющаяся от нас — «краснеет».
Так это на самом деле и оказалось: все линии звездных спектров сдвигаются у одной звезды в одну сторону, у другой — в другую, и как раз по закону Допплера. Если бы сдвиги испытывала только одна какая-либо линия или группа линий, принадлежащих, скажем, литию, то надо было бы искать индивидуальных причин этих сдвигов. Но поскольку сдвиги испытывали все линии данной звезды, причем по одному и тому же закону, постольку становилось ясным, что причина сдвигов была общая, относящаяся ко всей звезде. Так что предположение о том, что причиной сдвигов является движение источника света — звезды, — аналогично тому, как это имеет место в случае звука, — вполне правдоподобно. Но Белопольский все же решил опытным путем доказать, что принцип Допплера применим и к свету. Как это сделать? Надо было в земных условиях доказать, что закономерные сдвиги линий в спектрах происходят именно вследствие движения источника света. До тех пор пока такой опыт не будет проделан в лаборатории, будут появляться скептики. Они будут говорить: мы знаем, отчего изменяется длина волны у звука, но отчего она изменяется у света — не знаем!
Белопольский понимал, что такой опыт осуществить очень трудно. Все дело в том, что скорость света очень велика, а длины волн очень малы. Если светящееся тело, скажем, электрическая лампочка, будет двигаться со скоростью 30 километров в секунду, то и тогда изменение волны будет только около одного ангстрема, т. е. меньше одной стомиллионной доли сантиметра. Да и как заставить лампочку двигаться с такими скоростями?
Однако уже в 1894 году Белопольский пришел к выводу, что опыт поставить можно, и стал к нему готовиться.
Астрофизические открытия Белопольского с помощью лучей света
Тем временем Белопольский совершенствовал спектрограф и с его помощью измерял спектры небесных тел. В них он действительно наблюдал сдвиги спектральных линий. Считая причиной этих сдвигов движение небесных тел, Белопольский разрешил много интересных вопросов.
Рис. 23. Средняя полоска — спектр звезды Процион, вверху и внизу — линии лабораторного спектра химического элемента титана, приведенные для сравнения. На рисунке видно, что линии титана в звездном спектре сдвинуты влево в сторону коротких волн
По фотографиям спектров Белопольский вычислил скорости движения многих звезд. Оказалось, что одни из них удаляются от нас, другие же приближаются к нам. Скорость их движений различна, обычно она составляет несколько десятков километров в секунду (рис. 23).
Скорости движения целых звездных совокупностей — галактик — значительно выше: у некоторых галактик она достигает более 100 тысяч километров в секунду.
Теперь перед астрономами раскрылась грандиозная картина движения звезд и галактик.
Что дало это знание движения звезд? Оно показало, например, что не все звезды и галактики устойчивы. В природе не встречаются галактики, в которых число звезд превышает тысячу миллиардов, они распадаются. Во Вселенной, так же как и в мире атомов, образуются целостные системы, выяснение причин устойчивости которых несомненно приведет к раскрытию важных общих законов природы.
Рис. 24. Кольца Сатурна
Как известно, у планеты Сатурн имеются три кольца, как бы опоясывающих планету, но не соприкасающихся с ней (рис. 24). Астрономы обсуждали вопрос о строении колец. Еще Софья Ковалевская, первая русская женщина-ученый, математическими расчетами доказала, что кольца Сатурна не представляют собой сплошной твердой массы. Но телескоп не помогал решить вопрос— так это или не так. Вращение самого Сатурна было хорошо видно в телескоп: ца Сатурне есть пятна и можно следить за их перемещением. Но на кольцах нет никаких примет, нет ничего, за чем можно было бы следить. Если бы можно было установить, вращаются ли кольца и как именно вращаются, тогда узнали бы, твердые они или нет: ведь твердые кольца должны вращаться как одно целое.
Белопольский решил эту задачу в 1895 году. Кольца в некоторые годы видны с Земли почти в «профиль», в виде тонкого, светлого поперечника, пересекающего планету. Белопольский направил трубу спектрографа сначала на один конец этого поперечника и заметил, что спектральные линии сдвинуты вправо, в сторону длинных волн. Затем он навел трубу спектрографа на другой конец поперечника. Теперь спектральные линии оказались сдвинутыми влево. Ясно, что в первом конце точки кольца Сатурна удаляются от нас, а во втором конце — приближаются к нам. Так спектрограф показал, что кольца Сатурна вращаются. С помощью спектрографа Белопольский изучил сдвиги спектральных линий, полученных от внешней части и от внутренней части (ближней к центру) одного из колец Сатурна. По этим сдвигам он вычислил скорости обращения различных частей одного и того же кольца. Оказалось, что внутренняя часть кольца обращается быстрее внешней, а именно: внутренняя часть обращается вокруг планеты со скоростью в 20 километров в секунду, а внешняя — со скоростью 16 километров в секунду. Периоды обращения этих частей связаны с расстоянием их от центра планеты по закону Кеплера. Стало быть, движения различных частей колец независимы друг от друга. Стало ясно, что кольца Сатурна вращаются не как одно целое и состоят из множества отдельных твердых частиц. Софья Ковалевская была права.
Таким же способом Белопольский определил период вращения Юпитера.
Однажды Белопольский заметил, что в спектре одной звезды все линии раздвоены. Он заинтересовался этим явлением и следил за звездой несколько лет. Он заметил, что раздвоенные линии периодически то сближаются, то снова расходятся. Белопольский понял, что он наблюдает не обычную звезду, а двойную. Двойные звезды — это пары звезд: они находятся сравнительно близко друг к другу и вращаются вокруг общего центра тяжести. Много двойных звезд наблюдалось до этого в телескоп. Но двойные звезды, открытые Белопольским, находятся от нас так далеко, что даже в самые сильные телескопы кажутся одной звездой. Только спектрограф смог разделить идущие от них лучи. Обе звезды вращаются вокруг общего центра тяжести, и в то время как одна из них удаляется от нас, другая приближается к нам. В таком случае волны света, идущие от одной звезды, удлиняются, а волны, идущие от другой, укорачиваются, и спектрограф их разделяет.