Читаем без скачивания 5a. Электричество и магнетизм - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Имеется несколько задач, в которых уравнение (7.1) все же решается. К примеру, задача о заряженном проводнике, имеющем форму эллипсоида вращения, может быть решена с помощью некоторых специальных функций. Решение для тонкого диска тогда можно получить, бесконечно сплющив эллипсоид. А бесконечно вытянув тот же эллипсоид, получим поле заряженной иглы. Но надо подчеркнуть, что единственный прямой способ, применимый всюду и всегда, это путь численных расчетов.
Задачу о граничных значениях можно также решать на ее физическом аналоге. Уравнение Лапласа возникает во многих физических ситуациях: при изучении установившегося потока тепла, безвихревого течения жидкости, отклонений упругой мембраны. Часто можно соорудить физическую модель, являющуюся аналогом решаемой нами электрической задачи. Измерив в модели величину, аналогичную интересующей нас, можно узнать решение задачи. Примером аналоговой техники является применение электролитической ванны для решения двумерных задач электростатики. Решение удается потому, что дифференциальное уравнение для потенциала в однородной проводящей среде такое же, как и в вакууме.
Имеется много физических задач, в которых физические поля в каком-то одном направлении не изменяются или этим изменением можно пренебречь по сравнению с изменениями в двух других направлениях. Такие задачи называют двумерными; поле зависит только от двух координат. Скажем, если вдоль оси z протянуть длинную заряженную проволоку, то в точках неподалеку от нее электрическое поле зависит от x и y, а не от z; задача двумерная. Так как в двумерных задачах dj/dz=0, то уравнение для j в свободном пространстве имеет вид
(7.2)
Поскольку двумерное уравнение сравнительно простое, то существует широкий класс условий, в которых оно решается аналитически. Действительно, существует могучая математическая техника, связанная с теоремами теории функций комплексного переменного. К изложению ее мы сейчас и перейдем.
§ 2. Двумерные поля; функции комплексного переменного
Комплексная величина з определяется так:
(Не перепутайте з с координатой z; координата z не встретится в дальнейшем, потому что зависимости полей от z не будет.) Тогда каждой точке на плоскости (х, у) отвечает комплексное число з. Мы можем считать з особой (комплексной) переменной величиной и с ее помощью записывать обычные математические функции F(з). Например,
Если дана некоторая определенная функция F(з), то можно подставить з=x+iy; получится функция от х и у с действительной и мнимой частями. Например,
(7.3)
Любую функцию F(з) можно записать в виде суммы чисто действительной и чисто мнимой частей, и каждая из частей будет функцией от х и у:
(7.4)
где U(x, у) и V(x, у) — действительные функции. Значит, из любой комплексной функции F(з) можно произвести две новые функции U (х, у) и V(x,y). К примеру, .F(з) = з2 дает две функции:
(7.5)
и
(7.6)
Мы подошли сейчас к удивительной математической теореме, столь прекрасной, что доказательство ее придется отложить до соответствующего математического курса. (Если мы начнем заранее приоткрывать все тайны математики, она покажется вам потом скучной.) Теорема эта состоит вот в чем. Для любой «нормальной» функции (что это такое, математики вам объяснят лучше) функции U и V автоматически удовлетворяют соотношениям
(7.7)
и
(7.8)
Отсюда немедленно следует, что каждая из функций U и V удовлетворяет уравнению Лапласа:
(7.9)
(7.10)
Сразу видно, что для функций (7.5) и (7.6) эти уравнения выполняются.
Значит, всегда, отправившись от какой угодно обычной функции, можно прийти к двум функциям U (х, у) и V (х, у), которые обе есть решения двумерного уравнения Лапласа. Каждая функция представляет некоторый электростатический потенциал. Любая выбранная нами функция F(з) обязана снабдить нас решением какой-то задачи из электростатики, вернее даже двух задач, потому что решением является как U, так и V. Так можно выписать сколько угодно решений: просто напридумывать множество функций и останется только найти задачи с такими решениями. Такой подход к задачам вполне допустим, хоть он и производится задом наперед.
Для примера посмотрим, к какой физической задаче приведет нас функция Р(з)=з2. Из нее мы получаем две потенциальные функции (7.5) и (7.6). Чтобы увидеть, какую задачу решает функция U, мы найдем эквипотенциальные поверхности, полагая V равным постоянному числу А:
х2-у2 = А.
Это уравнение прямоугольной гиперболы. Перебирая разные значения А, мы получаем семейство гипербол, начерченное на фиг. 7.1. Когда A=0, то гиперболы вырождаются в пару диагоналей, проходящих через начало.
Такое семейство эквипотенциальных поверхностей встречается в нескольких физических задачах. В одной из них оно изображает детали структуры поля возле точки между двумя одинаковыми точечными зарядами.
Фиг. 7.1. Два семейства ортогональных кривых, которые могут представлять собой эквипотенциальные линии двумерного электростатического поля.
В другой оно изображает поле внутри прямого угла, образованного двумя проводящими плоскостями. Если есть два электрода, изогнутых так, как показано на фиг. 7.2, и имеющих разные потенциалы, то поле внутри угла С будет выглядеть в точности так же, как поле около начала координат на фиг. 7.1.
Фиг. 7.2. Поле возле точки С такое же, как на фиг. 7.1.
Фиг. 7.3. Поле квадрупольной линзы.
Сплошные линии — это эквипотенциальные поверхности, а пересекающие их штриховые — это линии поля Е. Вблизи острия или выступа электрическое поле повышается, а возле впадины или отверстия оно слабеет.
Найденное нами решение отвечает также гиперболическому электроду, помещенному около прямого угла, или двум гиперболам при соответствующих потенциалах. Заметьте, что поле фиг. 7.1 имеет интересное свойство. Составляющая х электрического поля Е дается выражением
т. е. электрическое поле пропорционально расстоянию от оси координат. Этот факт был использован, чтобы создать устройство (называемое квадрупольной линзой), необходимое для фокусирования пучков частиц (см. вып. 6, гл. 29, § 9). Фокусирующее поле обычно получают с помощью четырех гиперболических электродов, изображенных на фиг. 7.3. Проводя здесь линии электрического поля, мы просто перечертили с фиг. 7.1 семейство штриховых кривых V=const. Эти линии достались нам совершенно бесплатно! Кривые V=const перпендикулярны к кривым U=const, как это следует из уравнений (7.7) и (7.8). Как только мы выбираем функцию F(з), то получаем из U и V сразу же эквипотенциальные линии и линии поля. Мы давно знаем, что можно решить на выбор любую из двух задач, смотря по тому, какое семейство кривых мы примем за эквипотенциальное.
Другим примером послужит функция
(7.11)
Если мы напишем
где
и
то
откуда следует
Кривые U (х, у) =А и V (х, у) = В, где U и V взяты из уравнения (7.12), проведены на фиг. 7.4. И здесь тоже можно назвать немало случаев, описываемых этими полями. Один из самых интересных — это поле у края тонкой пластинки. Если линия В=0 направо от оси у изображает тонкую заряженную пластину, то линии поля близ нее даются кривыми с различными А.
Фиг. 7.4. Кривые постоянных U(x, у) и V(x, у) ив уравнения (7.12).
Фиг. 7.5. Электрическое поле возле края тонкой заземленной пластины.
Физическая картина показана на фиг. 7.5. Дальнейшие примеры — это функция
(7.13)
дающая нам поле снаружи прямого угла, функция