Читаем без скачивания Системное программирование в среде Windows - Джонсон Харт
Шрифт:
Интервал:
Закладка:
• Процессоры Opteron и Athlon 64 (AMD64) компании AMD, предназначенные, соответственно, для серверов и рабочих станций. Архитектуру AMD64 можно рассматривать как расширение архитектуры Intel x86, допускающее 64-битовую виртуальную адресацию и параллельное выполнение 32– и 64-битовых операций.
• 32/64-разрядные процессоры компании Intel, сравнимые с процессорами AMD64. Во время написания этой книги ожидалось, что технология 64-разрядного расширения будет применена в первую очередь в процессорах Xeon. Как и прогнозировалось, такие процессоры появились на рынке в конце 2004 года.
Поддержка Windows
API Win64 компании Microsoft предназначен для поддержки 64-разрядных архитектур таким способом, при котором в существующие исходные и двоичные коды требуется вносить лишь минимальные изменения. В настоящее время имеется несколько отдельных версий Win64.
• Windows XP 64-bit Edition доступна в виде, по крайней мере, двух версий. Бета-версия компании Microsoft поддерживает только процессор AMD Opteron. Компания Hewlett Packard выводит на рынок несколько моделей рабочих станций на базе процессоров Itanium с уже установленной системой Windows XP-Itanium2.
• Windows Server 2003 Enterprise Edition for 64-bit Extended Systems в настоящее время также проходит бета-тестирование. Эта версия обеспечивает поддержку процессоров AMD Opteron и Intel Xeon с использованием технологии 64-разрядного расширения.
• Windows Server 2003 Enterprise Edition for 64-bit Itanium-based Systems поддерживает, как говорит само ее название, серверы и рабочие станции, использующие один или несколько процессоров Itanium. Существует также версия Datacenter Edition. Например, эта версия устанавливается на системах Integrity компании Hewlett Packard, которые в настоящее время также появляются на рынке.
Поддержка сторонних компаний
На платформе Win64 доступны многочисленные базы данных, математические библиотеки, прикладные системы уровня предприятия, системы с открытым исходным кодом, а также целый ряд других систем. Тем не менее, каждый раз, когда планируется перенос программ на эту платформу, доступность необходимых продуктов сторонних компаний должна предварительно проверяться.
Обзор 64-разрядной архитектуры
С точки зрения программиста основная трудность при переходе от 32-разрядной модели к 64-разрядной заключается в том, что размер указателей и таких системных типов данных, как size_t и time_t, теперь может составлять 64 бита. Поэтому виртуальное адресное пространство процесса уже не ограничивается 4 Гбайт (фактически доступны приложениям только 3 Гбайт). Таким образом, перенос программ из Win32 в Win64 по существу требует лишь "удлинения" указателей, с чем связаны лишь самые минимальные последствия для пользовательских данных в модели Windows.
Необходимость в 64-битовой адресации
Возможности доступа к большим адресным пространствам требуются многим приложениям. Можно было бы привести множество примеров, аналогичных тем, которые перечислены ниже.
• Приложения для обработки изображений. Системы, использующие адресные пространства размером 4 Гбайт, в состоянии обеспечить лишь 20-секундное воспроизведение телевизионного изображения высокой четкости (High-Definition Television, HDTV) в реалистичных цветах.
• Автоматизированное проектирование механических (Mechanical Computer-Aided Design, MCAD) и электронных (Electronic Computer-Aided Design, ECAD) устройств. Для проектирования сложных сборочных узлов требуется наличие более 3 Гбайт памяти, а проектирование микросхем предъявляет к памяти несоизмеримо более высокие требования.
• Базы данных и хранилища данных. Использование файлов с размерами в несколько сотен Гбайт не является чем-то необычным, и возможность доступа к виртуальным адресным пространствам сопоставимых размеров значительно упрощает обработку таких файлов.
Теперь поддержка подобных запросов в отношении адресных пространств большого объема стала реальностью. Пройдет совсем немного времени, и 64-разрядные микропроцессоры станут доступными каждому, а большие объемы физической памяти при разумной стоимости будут поддерживаться на многих системах.
Потребность в 64-битовой адресации диктуется теми же факторами, которые делают столь желательными и необходимыми файлы гигантских размеров (свыше 4 Гбайт), и теперь, когда имеются достаточно мощные микропроцессоры Itanium, AMD64, а также процессоры, использующие технологию 64-разрядного расширения, вполне естественно ожидать, что Windows должна будет эволюционировать для удовлетворения этих запросов. Использование 64-разрядных ОС существенно в тех случаях, когда Windows отводится заметная роль в прикладных корпоративных и профессиональных системах.
Тем не менее, многие 32-разрядные приложения смогут работать нормально и на новой платформе, и на первом этапе для их переноса не надо будет ничего предпринимать. Для таких персональных приложений, как Microsoft Office или Adobe PageMaker, в течение некоторого времени переход к 64-битовой адресации, по-видимому, не потребуется. Следовательно, Windows будет поддерживать обратную совместимость.
Как и следовало ожидать, применение существующих 64-разрядных процессоров часто обеспечивает выигрыш в производительности, но этот выигрыш непосредственно никак не сказывается на программировании на уровне исходного кода.
Опыт UNIX
PC-системы всегда отставали от универсальных вычислительных систем (мэйнфреймов) и систем на основе UNIX в том, что касается базовых функциональных возможностей и масштабируемости. То же самое остается справедливым и в случае 64-разрядных архитектур.
• Основные поставщики UNIX-систем предоставляют 48– и 64-разрядные микропроцессоры с начала 90-х годов прошлого столетия.
• Основные поставщики UNIX-систем поддерживают 64-разрядные API на протяжении примерно того же периода времени.
• Сообщество пользователей UNIX остановилось на выборе в качестве стандарта так называемой модели LP64, отличающейся от модели Р64, принятой в Win64, о чем далее еще будет говориться.
• Переходы от 32 к 64 битам всегда осуществлялись сравнительно простым, если не сказать — тривиальным образом, и можно ожидать, что то же самое будет наблюдаться и при переходе от Win32 к Win64.
Опыт перехода от 16-разрядных версий Windows к 32-разрядным
Переход от 16-разрядных версий Windows к 32-разрядным начался в начале 90-х годов прошлого столетия с появлением Windows NT, и набрал ускорение после того, как использование Windows 95 стало обычным делом. Каким бы соблазнительным ни казалось предположение о том, что нас ожидает повторение той же истории, рассматриваемые нами ситуации отличаются в нескольких аспектах.
• Windows NT и Windows 95 были первыми из широко используемых "реальных" операционных систем для PC в том смысле, что обе системы поддерживали обмен страницами по запросу, потоки, вытесняющую многозадачность и множество других возможностей, которые были описаны в главе 1.
• Хотя API Win32 значительно расширил полезное адресное пространство, что делает и Win64, усовершенствования этим не ограничивались. Неуклюжие и устаревшие, несмотря на свою популярность, модели расширенной памяти были заменены другими. Аналогичная модель расширенной памяти (не описывается в данной книге) была введена и в Windows 2000, однако общие последствия этого шага в данном случае были не столь существенными.
• В API Win32 было введено множество новых функциональных возможностей, чего нельзя сказать о Win64.
Надолго ли хватит 64 бит?
Что касается мира PC, в котором возникла Windows, то можно утверждать, что первоначальная 16-разрядная модель Intel x86 (фактическое адресное пространство которой является 20-битовым) просуществовала в течение более десяти лет, и столько же времени уже существует и 32-разрядная архитектура. Однако переход к Win64 и 64-разрядному программированию, вообще говоря, происходит медленнее, чем происходил аналогичный переход к 32 битам. Вместе с тем, в обоих случаях переход миникомпьютеров и серверов на следующий уровень осуществлялся, по крайней мере, за 10 лет до того, как это начинало происходить с PC. Тогда вполне естественно задаться вопросом о том, следует ли ожидать перехода серверов или PC к 128 битам в будущем. Берусь утверждать, что любое расширение такого рода произойдет не раньше, чем через 10 лет, исходя из одной лишь величины 64-разрядного адресного пространства.
Предсказания — вещь ненадежная, однако, воспринимая это серьезно лишь наполовину, можно напомнить о часто цитируемом законе Мура, согласно которому отношение "стоимость/производительность" уменьшается вдвое каждые 18 месяцев. В свою очередь, быстродействие и емкость устройств каждые 18 месяцев примерно удваиваются. Применяя эти рассуждения к адресному пространству, можно ожидать, что дополнительный бит адреса нам будет требоваться через каждые 18 месяцев, откуда следует, что 64-разрядная модель будет исправно служить еще целых 48 лет (то есть почти столько же времени, сколько насчитывает вся история современных компьютеров). Оправданы ли такие неформальные выводы, которые встретились мне в одном из официальных источников, покажет время, однако в прошлом запросы к ресурсам PC возрастали гораздо быстрее, чем утверждается в приведенном прогнозе.