Читаем без скачивания Ткань космоса: Пространство, время и текстура реальности - Брайан Грин
Шрифт:
Интервал:
Закладка:
{30}
Есть несколько подходов к выводу преобразований координат и времени в специальной теории относительности Эйнштейна. Заинтересованный читатель может посмотреть главу 2 моей предыдущей книги (Грин Б. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории / Пер. с англ.; Общ. ред. В. О. Малышенко. М.: URSS, 2007) (вместе с математическим выкладками, приведёнными в примечаниях к этой главе). Чёткие рассуждения с техническими деталями приводятся в книге: Тейлор Э. Ф., Уилер Дж. А. Физика пространства-времени / Пер. с англ. Н. В. Мицкевича. Изд. 2-е, дополненное. М.: Мир, 1971.
[31]
Понсе де Леон (1460?–1521) — испанский конкистадор, участник второй экспедиции Христофора Колумба. Был одержим идеей поиска «источника молодости». (Прим. перев.)
{32}
Остановка времени при движении со скоростью света — интересная идея, но не следует слишком увлекаться ею. Дело в том, что специальная теория относительности показывает, что ни один материальный объект никогда не сможет достичь скорости света: чем быстрее он движется, тем труднее его «подтолкнуть», чтобы придать бо́льшую скорость. Чтобы разогнать объект до скорости света, ему надо дать бесконечно сильный толчок, что попросту невозможно сделать. Таким образом, «безвременно́й» характер фотона ограничен объектами с нулевой массой (фотон является примером такого объекта), и поэтому «безвременность» навсегда за пределами достижимого всех объектов, за исключением немногих частиц. Хотя может быть интересным и полезным вообразить, как Вселенная будет выглядеть при движении со скоростью света, но в конечном счёте нам стоит сосредоточиться на том, что реально достижимо для материальных объектов, таких как мы с вами, если мы хотим понять, как специальная теория относительности влияет на наше представление о времени.
[33]
Дата приведена неверно. Речь идёт об экспериментах Миллера, которые были проведены с 8 по 21 апреля 1921 г. См.: Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М.: Наука, 1989. С. 110. (Прим. ред.)
{34}
См.: Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. С. 110.
[35]
Эксперименты по проверке постоянства скорости света и сейчас продолжаются со всё возрастающей точностью. Они имеют большое значение для проверки теорий квантовой гравитации, так как некоторые из таких теорий предсказывают слабое нарушение постоянства скорости света (и нарушают некоторые другие следствия СТО). (Прим. ред.)
{36}
Точнее говоря, мы говорим, что вода вращается, если её поверхность принимает вогнутую форму, и не вращается — если не принимает такую форму. С точки зрения Маха, в пустом пространстве нет понятия вращения, так что поверхность воды всегда будет плоской (или, чтобы избежать вопросов, связанных с отсутствием гравитации, мы можем сказать, что верёвка, связывающая два камня, всегда будет оставаться ненатянутой). Здесь же утверждается, что в специальной теории относительности есть понятие вращения даже в пустой Вселенной, поэтому поверхность воды может стать вогнутой (и может натянуться верёвка, связывающая два камня). В этом смысле специальная теория относительности противоречит идеям Маха.
{37}
Fölsing A. Albert Einstein: A Biography. 1997. P. 208–210.
[38]
Спрингфилд — вымышленный город, в котором разворачивается действие знаменитого мультсериала про семейку Симпсонов. Далее будут частенько встречаться достопримечательности Спрингфилда — супермаркет «На скорую руку» и атомная электростанция. Мардж — мать семейки Симпсонов, Лиза — её дочь. Глава семейства Гомер работает на той самой атомной электростанции. (Прим. перев.)
[39]
Шоу «Щекотка и Царапка» смотрит всё та же семейка Симпсонов. (Прим. перев.)
[40]
Как и в любой книжке с бегущими картинками, на страницах рис. 3.3 отражаются только характерные моменты времени. Глядя на них, у вас может возникнуть интересный вопрос, является ли время дискретным или оно бесконечно делимо. Мы ещё вернёмся к этому вопросу, а пока представим, что время бесконечно делимо, так что в нашей книжке с бегущими картинками бесконечное число страниц.
[41]
Апу и Мартин — ещё парочка персонажей из мультсериала про семейку Симпсонов. (Прим. перев.)
{42}
Математически подкованный читатель заметит, что если выбрать единицы измерений так, что скорость света будет равняться единице (этого можно достичь, взяв, например, секунду за единицу времени и световую секунду, равную 300 тыс. км, за единицу длины), то свет будет двигаться по пространству-времени под углом 45° по отношению к оси времени (потому что для такой диагональной линии одной единице пространства будет соответствовать одна единица времени, двум единицам пространства — две единицы времени и т. д.). Поскольку ничто не может превысить скорость света, то любой материальный объект должен покрывать меньшее расстояние за единицу времени, чем луч света, и, следовательно, его траектория в пространстве-времени должна быть наклонена к оси времени под углом, меньшим 45°. Более того, Эйнштейн показал, что зависимость между временем tдвижущ движущегося со скоростью υ наблюдателя и временем tстационарн покоящегося наблюдателя (предположим для простоты, что пространство одномерно) даётся формулой
где γ = (1 − υ2/c2)−1/2 и c — скорость света. В принятых нами единицах c = 1, поэтому υ < 1 и, следовательно, временны́е слои для движущегося наблюдателя (где tдвижущ фиксировано) задаются уравнением
Такие срезы наклонены под некоторым углом к временны́м слоям стационарного наблюдателя (tстационарн = const), а поскольку υ < 1, то угол между ними не может превосходить 45°.
{43}
Для математически подкованного читателя это утверждение можно строго сформулировать следующим образом: геодезические линии пространства-времени Минковского (пути экстремальной длины между двумя точками пространства-времени) являются геометрическим объектами, не зависящими от выбора координат или системы отсчёта. Эти линии являются внутренними, абсолютными геометрическими свойствами пространства-времени. Точнее говоря, в стандартной метрике Минковского геодезические (времениподобные) линии являются прямыми (составляющими с осью времени угол меньше 45°, поскольку скорость материального объекта не может превышать скорость света).
{44}
Есть ещё кое-что важное, с чем согласятся все наблюдатели, независимо от скорости их движения. Это подразумевается в нашем описании пространства-времени, но стоит сказать об этом прямо! Если одно событие является причиной другого (я кинул камень в окно, и окно разбилось), то все наблюдатели согласятся с тем, что причина стояла перед следствием (все согласятся, что я кинул камень перед тем, как окно разбилось). Для математически подкованного читателя это нетрудно показать с помощью нашего схематического описания пространства-времени. Если событие A является причиной события B, то линия, проведённая в пространстве-времени от A до B пересечёт каждый временно́й слой (временно́й слой наблюдателя, покоящегося по отношению к A) под углом, превышающим 45°. Например, если события A и B произошли в одном и том же месте пространства (от резинки, натянутой вокруг моего пальца [событие A] мой палец побелел [событие B]), то линия, соединяющая A и B, перпендикулярна плоскостям временны́х слоёв (составляет с ними угол 90°). Если же события A и B произошли в разных точках пространства (камень летит в окно), то всё же влияние из A в B передавалось со скоростью, не превышающей скорость света, откуда следует, что соответствующая траектория в пространстве-времени не может отклониться от оси времени на угол, превышающий 45°, и, значит, угол между траекторией и любым временны́м слоем всегда больше 45°. (Вспомните из примечания 9, что только свет может отклоняться на максимальный угол 45° по отношению к оси времени.) Временны́е слои двигающегося наблюдателя наклонены под углом к временны́м слоям неподвижного наблюдателя, но этот угол наклона всегда меньше 45° (поскольку относительная скорость движения двух наблюдателей не может превышать скорость света). И, поскольку угол траектории, связанной с причинно связанными событиями, всегда больше 45°, то эта траектория не может пересечь временно́й слой, относящийся к следствию, раньше слоя, относящегося к причине. Поэтому для всех наблюдателей причина всегда предшествует следствию.