Читаем без скачивания Эволюция разума - Рэймонд Курцвейл
Шрифт:
Интервал:
Закладка:
Открытия в нейробиологии подтвердили ключевую роль иерархических способностей новой коры, а также представили доказательства теории мысленного распознавания образов (ТРО). Эти доказательства складываются из множества наблюдений и анализов, часть которых я здесь представлю. Канадский психолог Дональд Хебб (1904–1985) первым предпринял попытку идентифицировать неврологические основы процесса обучения. В 1949 г. он описал механизм физиологического изменения нейронов в зависимости от пережитого опыта, что может быть основой обучаемости и пластичности головного мозга. Он писал: «Предположим, что сохранение или повторение реверберационной активности способствует длительным клеточным изменениям… Если аксон клетки А находится достаточно близко, чтобы возбуждать клетку В, и возбуждает ее непрерывно или многократно, происходит некий рост или определенные метаболические изменения в одной или в обеих клетках, в результате чего возрастает эффективность возбуждения клеткой А клетки В»[45]. Эта теория, выраженная в тезисе cells that fire together wire together («между клетками, которые возбуждаются одновременно, возникает прочная связь»), стала известна как «правило Хебба». Идея Хебба получила подтверждение, и теперь известно, что клетки мозга могут образовывать новые связи и усиливать их благодаря собственной активности. Теперь сканирование головного мозга позволяет наблюдать за развитием подобных связей. Строение искусственных сетей нейронов основано на теории Хебба об обучении нейронов.
Теория Хебба строится на предположении, что основной обучающейся единицей новой коры является нейрон. Теория распознавания образов, которую предлагаю вам я в данной книге, строится на другой основополагающей единице — не на отдельном нейроне, а скорее на совокупности нейронов, число которых в этой совокупности, по моим оценкам, близко к сотне. Связи и синаптические взаимодействия внутри каждой такой единицы достаточно прочные и определены генетически: организация каждого распознающего модуля генетически предопределена. Обучение происходит в процессе образования связей между этими единицами, а не внутри них и, возможно, связано с усилением синаптической передачи в этих связях.
Недавно новые подтверждения того, что основной единицей обучения является модуль из нескольких десятков нейронов, были получены швейцарским нейрофизиологом Генри Маркрамом (род. в 1962 г.), чей амбициозный проект «Голубой мозг» (Blue Brain) я представлю в седьмой главе. В статье 2011 г. он описывал свои эксперименты по сканированию и анализу нейронов новой коры млекопитающих для «поиска доказательств существования ансамблей Хебба на самом примитивном уровне организации коры». Однако вместо них он обнаружил «трудноуловимые ансамбли [клеток], связь и синаптический вес которых вполне предсказуемы и ограничены». На основании этих результатов Маркрам пришел к заключению, что «опыт не может просто моделировать синаптические связи этих ансамблей» и что «они служат врожденными строительными блоками знаний для восприятия типа кубиков лего, а формирование памяти включает в себя соединение этих кубиков в сложные конструкции». Он продолжает: «О существовании функциональных ансамблей нейронов было известно уже несколько десятилетий, однако не существовало прямого доказательства наличия кластеров синаптически связанных нейронов… Поскольку все эти ансамбли похожи между собой по топологии и синаптическому весу и не сформированы под действием какого-либо специфического опыта, можно считать, что это врожденные ансамбли… а опыт играет лишь минорную роль в формировании синаптических связей и их весов… Наши исследования подтвердили существование врожденных ансамблей типа кубиков лего, состоящих из нескольких десятков нейронов… Благодаря связям между ансамблями в слое новой коры могут возникать более сложные структуры, затем ансамбли еще более высокого порядка в кортикальной колонке, еще более сложные ансамбли отделов мозга, и, наконец, самый сложный ансамбль соответствует всему головному мозгу в целом… Накопление воспоминаний сильно напоминает строительство из кубиков лего. Каждый ансамбль эквивалентен блоку лего, содержащему некоторое количество элементарных врожденных знаний о том, как воспринимать внешний мир и реагировать на него… При соединении разных блоков образуется уникальная комбинация этих врожденных воспринимаемых образов, составляющих специфические знания и опыт индивидуума»[46].
Предлагаемая Маркрамом модель «кубиков лего» полностью совместима с описанной мной теорией распознающих модулей. В электронном письме Маркрам назвал эти «кубики лего» «общим и врожденным знанием»[47]. Я считаю, что задача модулей заключается в распознавании и запоминании образов, а также их предсказании на основании частичных образов. Заметим, что предположение Маркрама о том, что в состав каждого модуля входит «несколько дюжин нейронов», основано лишь на анализе пятого слоя новой коры. Действительно, пятый слой очень богат нейронами, но если учитывать содержание нейронов в шести уровнях, мы получим значение около 100 нейронов на модуль, что соответствует моим оценкам.
Последовательное возбуждение и модульное строение новой коры были известны уже на протяжении многих лет, но в данном исследовании впервые говорится о стабильности этих модулей при динамических процессах, происходящих в мозге.
Результаты другого нового исследования, проведенного в Массачусетском госпитале при финансовой поддержке Национального института здоровья, опубликованные в мартовском номере журнала Science за 2012 г., также демонстрируют регулярную структуру связей в новой коре[48]. В статье описано возбуждение новой коры в соответствии с некоей координатной сеткой, как на карте упорядоченных городских улиц: «В общем, структура головного мозга напоминает Манхэттен с двумерным планом улиц и лифтом, движущимся по третьей, вертикальной оси», — пишет руководитель данного исследования нейрофизиолог из Гарварда Ван Дж. Виден.
В электронной версии статьи Ван Виден рассказывает о значении данного исследования: «Это было исследование трехмерной структуры связей в головном мозге. На протяжении последних станет ученые представляли себе головной мозг в виде порции спагетти — набор отдельных путей, не имеющих выраженной пространственной связи. Используя метод магнитного резонанса, мы смогли провести экспериментальное исследование. И вместо независимых или связанных случайным образом путей мы обнаружили, что все пути в головном мозге образуют единую, чрезвычайно простую структуру. В общем приближении они образуют кубик. Все пути идут в трех перпендикулярных направлениях, и на каждом из этих направлений пути организованны и строго параллельны. Таким образом, вместо несвязанных спагетти мы видим общую структуру мозговых связей как единую слаженную структуру».
Итак, исследования Маркрама демонстрируют наличие в новой коре повторяющихся модулей, состоящих из нейронов, а исследования Ван Видена — удивительную упорядоченность связей между этими модулями. Мозг представляет собой огромное множество «ожидающих связей», к которым могут подключаться распознающие модули. Таким образом, если один какой-то модуль хочет подключиться к другому, одному из них не нужно растить аксон, а другому дендрит, чтобы преодолеть физическое расстояние между ними. Они просто используют одну из аксональных ожидающих связей и подключаются к концу нити. Как пишут Ван Виден и его коллеги, «пути головного мозга следуют основному плану, сформированному… [в процессе] раннего эмбриогенеза. Таким образом, пути зрелого мозга отражают картину этих первозданных переходов, физически сформированных в ходе развития». Другими словами, когда мы учимся и приобретаем какой-либо опыт, распознающие модули новой коры подключаются к этим уже существующим связям, возникшим еще на стадии эмбрионального развития.
По такому же принципу устроен электронный чип, называемый «программируемой пользователем вентильной матрицей» (ППВМ, англ. Field-Programmable Gate Array, FPGA). Этот чип содержит миллионы модулей, использующих логическую функцию «ожидающих связей». При реализации определенной функции эти связи либо активируются, либо инактивируются (посредством электронных сигналов).
Те протяженные связи в новой коре, которые не применяются, в итоге отключаются, что отчасти объясняет, почему адаптация соседних участков новой коры для компенсации поврежденных участков не является столь же эффективной, как использование исходного участка. В соответствии с результатами Ван Видена исходные связи в высшей степени упорядочены и повторяемы, как и сами модули, а их сеть применяется для «направления проведения [сигналов]» в новой коре. Такая картина обнаружена в головном мозге человека и всех приматов и распространяется на все зоны новой коры, начиная от участков, ответственных за распознавание ранних (наиболее простых) сенсорных образов, и заканчивая уровнем высших эмоциональных образов. В заключительной части статьи Ван Видена говорится, что «всеобъемлющая, единая и последовательная сетчатая структура церебральных путей соответствует трем основным осям развития». Это опять же говорит о едином алгоритме функционирования новой коры.