Категории
Самые читаемые

Читаем без скачивания Пять нерешенных проблем науки - Артур Уиггинс

Читать онлайн Пять нерешенных проблем науки - Артур Уиггинс

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 ... 51
Перейти на страницу:

Например, некоторые гены активируются лишь однажды и вызывают необратимые действия по сравнению с полностью обратимым механизмом lac-оперона. У многих животных неспециализированные, так называемые стволовые клетки развиваются очень рано, еще у зародыша. Они превращаются в специализированные клетки, вроде клеток мозга или ногтей, следуя определенному генетическому образцу, который может в итоге привести даже к смерти клетки. Такая специализация клеток порождает все большее число ДНК, РНК и белковых ферментов, так что эукариоты могут совмещать в своем метаболизме тонкие взаимодействия между этими молекулами.

Модельные организмы

Излюбленный объект исследования среди эукариот — Saccharomyces accharomyces cerevisae (S. cerevisae) больше известный как пивные дрожжи. Пожалуй, это более всего изученный на молекулярном и клеточном уровнях эукариотный организм. S. cerevisae представляет собой всего лишь одноклеточный грибок, но многие процессы в его клеточном ядре сходны с теми же процессами у млекопитающих. Действительно, исследование дрожжей помогло выявить многие молекулы и химические реакции, задействованные в процессах, ход которых нарушается при раке. S. cerevisae устроены сложнее бактерии, чье ДНК, содержащее около 12 млн. нуклеотидных пар азотистых основания, имеет 6 тыс. генов. И Е. coli, и S. cerevisae считаются модельными организмами, которые должны:

1) быстро развиваться, имея короткий срок жизни;

2) обладать малыми размерами, будучи взрослыми;

3) быть всегда под рукой;

4) быть простыми в обращении;

5) выполнять свои биологические функции сходным с более сложными организмами, вроде человека, образом.

Усердно изучаются и другие модельные организмы. Caenorhabditis elegans — прозрачный круглый червь, вырастающий в длину не более 1 мм, вполовину величины вот этого знака ~. С. elegans достигает взрослого состояния за три дня, живет в почве по всему свету и питается микробами вроде тех, что обитают в перегное.

Этот маленький червь представляет собой многоклеточную (959 клеток) эукариоту с 19 099 генами в состоящей из 97 млн. пар азотистых оснований ДНК. Он развивается из одной клетки в организм с нервной системой и «мозгом». С. elegans способен к обучению, вырабатывает яйцеклетки и сперматозоиды, постепенно стареет и умирает. Сидни Бреннер, молекулярный биолог из Великобритании, говорит, что С. elegans оправдывает свое название, ибо на самом деле «фотогеничен», как видно на рис. 4.5. Бреннер, Джон Салстон и Роберт Хорвиц разделили Нобелевскую премию 2002 года по физиологии и медицине как раз за работу с червем С. elegans.

Другой модельный организм, Drosophila melanogaster, знаком многим из нас. В 1906 году гарвардский профессор эмбриологии Уильям Эрнест Касл привлек к участию в одном проекте аспиранта [Крейга Вудворта].

Рис. 4.5. С. elegans

Он попросил его не убирать несколько перезрелых виноградин, а затем посмотреть, что получится. Получились D. melanogaster — плодовые мушки — организм, изучаемый ныне в лабораториях по всему миру. Благодаря своим идеальным свойствам модельного организма плодовые мушки широко используются в исследованиях по генетике и биологии развития.

Жизненный цикл плодовой мушки составляет 16 дней, а новое поколение она дает каждые 12 часов. Эти существа плодовиты, непритязательны и, по словам генетика из Беркли Герри Рубин, имеют столь много общего с человеком, что их называют крохотными людьми с крыльями. Црозофила располагает 13 600 генами на ДНК из 165 млн. нуклеотидных пар азотистых оснований. Весь этот молекулярный аппарат умещается в тельце длиной 3 мм, величиной примерно с букву V в имени Venter (о самом Вентере чуть позже).

Mus mesculus (мышь), давний любимец медиков, занимающихся изучением болезней и лекарств, тоже соответствует всем требованиям, предъявляемым к модельным организмам. К тому же геном мыши весьма схож с геномом человека.

Генетические сравнительные исследования уже многое прояснили в отношении строения и функционирования человеческого тела. Дальнейшие исследования принесут дополнительные сведения.

Другие создания, вроде полосатой перцины, иглобрюха [родственного горчице сорняка из семейства крестоцветных], резушки Таля (Arabidopsis thaliana) и палочки Пфайфера (Haemophilus influenzae), выступают в роли модельных организмов и изучены в разной степени. Модельные организмы и приспособления, требуемые для их изучения, вызывают в памяти ситуации из классической описательной биологии с образами бесчисленных исследователей, склонившихся над микроскопом или щурящихся сквозь стекла очков во время поездок по экзотическим местам, где можно увидеть организмы в их естественной среде обитания (вспомним Чарльза Дарвина на Галапагосских островах).

Физика — биология — химия

Несмотря на значимость модельных организмов для биологов, поле деятельности современной биологии значительно расширилось во многом благодаря нахлынувшим туда представителям других отраслей знаний, чья деятельность преобразила сам подход к изучению биологии.

Чтобы понять, как произошло это преображение, взглянем иначе и шире на центральное учение молекулярной биологии. Описательная биология сосредоточивалась на видимых признаках, но находила мало объяснений, связанных с этими признаками молекулярных механизмов. Затем пришел черед химии, занимавшейся химическими реакциями внутри живых существ, прояснявшими биологические процессы. Но главная трудность состояла в том, что управляющие живыми системами молекулы были слишком малы, чтобы их можно было для разглядывать в микроскоп.

Следующими нахлынули физики, посредством рентгеновской кристаллографии выявившие двойную спираль ДНК (вспомним биолога Джеймса Уотсона и физика Фрэнсиса Крика, воспользовавшихся данными рентгеновского кристаллографа Розалинды Франклин). Итак, хорошие вести заключались в создании представления об общем строении ДНК, а плохие — в невозможности разглядеть подробности ее строения из-за малых размеров. ДНК содержит такое огромное количество парных оснований нуклеотидов, что их определение и выписывание оказалось сложной задачей.

Итак, положение биологии в 198 0-е годы было следующим: молекулярная биология сосредоточилась на работе с крайне малыми объектами; классическая описательная биология ограничилась наблюдением той части биосферы, которая была доступна зрению, пусть и сквозь окуляр микроскопа. Многие детали на стыке микро — и макроскопических областей биологии оказались совершенно необъяснимыми (рис. 4.6).

Рис. 4.6. Общая картина биологии

Переход от большого масштаба к малому происходил медленно. Изучение молекул с химической точки зрения кое-что проясняло, но продвижение шло черепашьим шагом, а черепаха, увы, не модельный организм.

В середине 1980-х годов некоторых биологов осенило: почему бы не изучить весь состав ДНК живого организма, так называемый геном? Более того, посредством отдельных модельных организмов прийти к конечной цели — геному человека. Это привело к очередному наплыву в биологию приборостроителей, программистов, предпринимателей и появлению одного неуемного исследователя — Дж. Крейга Вентера.

Составление карты генома человека. Великие задачи требуют величественныхорудий

Прежде чем описывать все перипетии, увенчавшиеся в итоге составлением карты генома модельных организмов и человека, вникнем в подробности того, как устанавливается последовательность оснований плотно упакованной молекулы ДНК. Оказывается, геном человека состоит из 3 млрд. парных оснований нуклеотидов. Если считать их по одному в секунду, на это уйдет почти 100 лет. Очевидно, для их определения потребовался более быстрый способ, для чего понадобилось усовершенствовать несколько методов.

Электрофорез.

В 1937 году шведский биохимик Арне Тиселиус (Тизелиус) разработал метод разделения заряженных частиц во взвеси на основе их массы и заряда (рис. 4.7). Заряженная частица в электрическом поле под действием его силы ускоренно движется в сторону противоположно заряженного электрода. Погруженная в среду (гель) частица тормозится под действием силы трения. При равенстве электрической силы и силы трения частица движется с постоянной скоростью, именуемой конечной. Данный подход знаком парашютистам, которые благодаря уравновешиванию их веса с силой трения опускаются на землю с постоянной, а не с возрастающей скоростью.

Рис. 4.7. Установка для электрофореза

Для выделения частиц в геле Тиселиус применил красители. Данный подход он впервые опробовал при разделении белков в растворе — а в 1948 году был удостоен за свою работу Нобелевской премии по химии. С тех пор его метод использовался в опытах с множеством частиц при движении в различных средах. А для их выделения существуют несколько различных приемов.

1 ... 14 15 16 17 18 19 20 21 22 ... 51
Перейти на страницу:
На этой странице вы можете бесплатно скачать Пять нерешенных проблем науки - Артур Уиггинс торрент бесплатно.
Комментарии