Читаем без скачивания Приглашение в теорию чисел - О. ОРЕ
Шрифт:
Интервал:
Закладка:
4p ≡ 4 (mod p).
Используя этот процесс, можно доказать по индукции, что аp ≡ a (mod p) для всех значений числа
а = 0, 1…. р -1. (7.5.6)
Случаи a = 0 и а = 1 очевидны. Так как каждое число сравнимо (mod р) с одним из остатков, записанных в (7.5.6), мы делаем вывод:
для любого целого числа а и любого простого числа р
ap ≡ a (mod p). (7.5.7)
Это утверждение обычно называют теоремой Ферма, хотя некоторые авторы называют ее малой теоремой Ферма, чтобы отличить от последней теоремы Ферма, или гипотезы Ферма, о которой мы упоминали в § 3 главы 5.
Пример. Для р = 13 и а = 2 мы находим: 13 = 8+ 4 + 1, т. е. 213 = 28+4+1 = 28 24 • 21. Так как 24 = 16 ≡ 3 (mod 13), 28 ≡ 9(mod 13), то
213 = 28 • 24 • 2 ≡ 9 • 3 • 2 ≡ 2 (mod 13),
как и утверждает теорема Ферма.
В соответствии с правилом сокращения для сравнений, сформулированном в конце § 3, мы можем сократить общий множитель а в обеих частях записи теоремы Ферма (7.5.7) при условии, что число а взаимно просто с числом р, являющимся модулем сравнения. Это дает следующий результат:
если а является целым числом, не делящимся на простое число р, то
ap-1 ≡ 1 (mod p). (7.5.8)
Этот результат также называют теоремой Ферма.
Пример. Когда а = 7, р = 19, мы находим, что
72 = 49 ≡ 11 (mod 19)
74 ≡ 121 ≡ 7 (mod 19),
78 ≡ 49 ≡ 11 (mod 19),
716 ≡ 121 ≡ 7 (mod 19),
и это дает
ap-1 = 718 = 716 • 72 ≡ 7 • 11 ≡ 1 (mod 19),
что соответствует утверждению (7.5.8).
В качестве приложения теоремы Ферма вновь рассмотрим треугольники Пифагора, обсужденные в гл. 5 и докажем следующее утверждение:
произведение длин сторон треугольника Пифагора делится на 60.
Доказательство. Очевидно, достаточно доказать это для простейших треугольников. В соответствии с формулой (5.2.7), это произведение есть
Р = 2mn (m2 — n2) (m2 + n2) = 2mn (m4 — n4).
Число Р делится на 60 тогда и только тогда, когда оно делится на 4, на 3 и на 5. Так как одно из чисел m и n четно, то 2mn, а следовательно, и число Р, делится на 4. Оно делится на 3, если хотя бы одно из чисел m или n делится на 3, но если ни одно из них не делится на 3, то Р все же будет делиться на 3, так как из условий (7.5.8), а также D(m, 3) = 1 и D (n, 3) = 1 следует, что m2 ≡ 1 (mod 3) и n2 ≡ 1 (mod 3), так что
m2 — n2 ≡ 1 – 1 = 0 (mod 3).
Аналогично, число Р делится на 5. Это очевидно, если m или n делится на 5. Если ни одно из них не делится на 5, то вновь по теореме Ферма (7.5.8) получаем
m4 — n4 ≡ 1 – 1 = 0 (mod 5).
ГЛАВА 8
НЕКОТОРЫЕ ПРИМЕНЕНИЯ СРАВНЕНИЙ
§ 1. Проверка вычислений
Как мы уже упоминали, создателем теории сравнений был немецкий математик Карл Фридрих Гаусс. Его знаменитая работа по теории чисел «Арифметические исследования» появилась в 1801 году, когда ему было 24 года. В первых главах этой книги рассказывается о теории сравнений. Однако здесь следует упомянуть, что следы теории сравнений можно обнаружить за несколько столетий до Гаусса. Некоторые из них присутствуют в древних правилах проверки арифметических вычислений. Они составляют существенную часть инструкции по арифметическим операциям эпохи Ренессанса. Некоторые из них используются до сих пор, а из всего того, что нам известно об их происхождении, можно сказать, что их корни лежат в античности.
Мы не знаем, каким образом эти правила были впервые введены, однако попытаемся указать один из возможных путей, на котором они могли быть открыты. Вернемся к временам счетных досок. На таком абаке каждая цифра в числах, которые участвовали в вычислениях, обычно выкладывалась с помощью фишек, камней, палочек или орехов, причем каждая группа отмечала количество единиц, десятков, сотен и т. д. в соответствии с местом их нахождения. В нашей десятичной системе число
N = an10n + an-110n-1 +… + a2102 + a110 + a0 = (an, an-1…, a2, a1, a0)10 (8.1.1)
потребовало бы для своей записи
SN = an + an-1 +… + а2 + а1 + а0 (8.1.2)
фишек. Это число мы называем суммой цифр числа N.
Теперь предположим, что мы хотим выполнить на доске простое действие, а именно: сложить два числа N и M. Тогда мы должны отметить на доске также второе число
M = (bm, bm-1, …, b2, b1, b0)10,
у которого на тех же линиях лежит
SM = bm + bm-1 + … + b2 + b1 + b0
складываемых фишек. На некоторых линиях может теперь лежать больше, чем по 9 фишек. Операция, необходимая для нахождения числа N + М, состоит в замене десяти фишек на одной линии одной фишкой на следующей линии. И так нужно продолжать до тех пор, пока такой процесс возможен. На каждом шаге заменяют десять фишек одной-единственной и таким образом происходит потеря девяти фишек на доске. Итак, мы видим, что если сложение выполнено правильно, то число фишек, остающихся на доске, должно удовлетворять условию
SN+M ≡ SN + SM (mod 9), (8.1.3)
т. е. количество фишек, находящихся на доске, должно отличаться от первоначального общего числа фишек на число, кратное 9. Эта проверка (8.1.3) до сих пор сохранила свое старое название «выбрасывание девяток».
После того как это правило было открыто, не составило труда заметить, что оно также применимо при сложении нескольких чисел, при вычитании и при умножении; в последнем случае, в соответствии с (8.1.3),
SM SN ≡ SMN (mod 9). (8.1.4)
Теоретическое доказательство этих правил является легкой задачей при использовании сравнений. Очевидно, что
1 ≡ 1, 10 ≡ 1, 102 ≡ 1, 103 ≡ 1… (mod 9); (8.1.5)
таким образом, из (8.1.1) и (8.1.2) мы делаем вывод, что
N ≡ SN (mod 9). (8.1.6)
Поэтому из правил сравнений, которые мы установили в § 3 главы 7, ясно, что
SN ± SM ≡ N ± М ≡ SN ± M,
SN • SM = N •M ≡ SN•M (mod 9).
Правило «выбрасывания девяток» чаще всего применяется к умножению. Возьмем в качестве примера числа
M = 3119, N = 3724 (8.1.7)
и их произведение
М • N = 11 614 156.
Это вычисление не может быть верным, так как если бы оно было верным, то мы имели бы, что
M ≡ SM ≡ 3 + 1 + 1 + 9 ≡ 5 (mod 9),
N ≡ SN ≡ 3 + 7 + 2 + 4 ≡ 7(mod 9)
и MN ≡ SMN ≡ 1 + 1 + 6 + 1 + 4 + 1 +5 + 6 ≡ 7 (mod 9).
Но 5 • 7 = 35 ≠ 7 (mod 9).
В действительности же это произведение равно MN = 11 615 156.
В средневековых школах ученики имели строгий наказ обязательно проводить проверку своих упражнений. Поэтому в рукописях, сохранившихся с тех времен, мы видим множество знаков, похожих на эмблему из скрещенных костей. Такой знак для нашего примера выглядит так, как на рис. 18.
Рис. 18.
Здесь числа 5 и 7, лежащие слева и справа, означают остатки чисел М и N (по модулю 9), а верхнее число 8 является остатком вычисленного произведения MN. Оно должно проверяться с помощью произведения остатков начальных чисел, записываемого в нижней части.
Здесь
5 • 7 = 35 ≡ 8 (mod 9).
Рис. 19.
Такая проверка «скрещенных костей» была совершенно обычной в ранних изданиях учебников арифметики (рис. 19), например, в английских учебниках семнадцатого и восемнадцатого веков. Конечно, существует возможность, что вычисления содержат ошибку, необнаруживаемую методом «выбрасывания девяток», но тогда мы знаем, что ошибка является «ошибкой по модулю 9».