Категории
Самые читаемые
💎Читать книги // БЕСПЛАТНО // 📱Online » Научные и научно-популярные книги » Прочая научная литература » Наблюдения и озарения или Как физики выявляют законы природы - Марк Перельман

Читаем без скачивания Наблюдения и озарения или Как физики выявляют законы природы - Марк Перельман

Читать онлайн Наблюдения и озарения или Как физики выявляют законы природы - Марк Перельман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 66
Перейти на страницу:

Но в июне 1900 г. лорд Рэлей показал, в статье всего из двух страниц, что если применить к излучению закон равного распределения энергии по степеням свободы (а на нем зиждется вся статистическая физика) то для зависимости интенсивности излучения от температуры получается формула, совсем не похожая на ту, которую вывел Вин (эти аргументы через несколько лет развил Дж. Джинс, и поэтому формула называется распределением Рэлея — Джинса). Это распределение великолепно описывало интенсивность излучения малых частот, как раз там, где формула Вина не работала.

Джон Уильям Стретт, 3-й лорд Рэлей (1842–1919, Нобелевская премия 1904 г.) — преемник Максвелла на посту директора Кавендишской лаборатории, классик теории колебаний и волн, в частности акустики, установил закон рассеяния света в газе и объяснил голубой цвет неба, открыл газ аргон (совместно с У. Рамзаем), ряд законов магнетизма, изобрел несколько оптических приборов. Его кредо заключалось в словах: «Физика — это измерения», — и потому он добивался все большей точности в опытах.

Ситуация стала парадоксальной: статистическая физика, законы которой, несомненно, правильны, ведет, с одной стороны, к формуле Вина, а с другой — к распределению Рэлея — Джинса, но при этом закон смещения Вина выполняется в обоих случаях. Формула Вина подтверждается на высоких частотах, формула Рэлея — на низких. Эти заключения вытекали из скрупулезных измерений О. Р. Люммера (1860–1925) и Э. Принсгейма (1859–1917), сумевших измерить к 1899 г. излучательную способность «черного» тела в очень широком интервале температур — от 85 до 1800 К.

2. Макс Планк

Экспериментаторы, проверившие все это, обратились к Максу Планку, признанному авторитету в термодинамике. Планк понял, что нужно искать некую формулу, такую, которая будет преобразовываться для малых и высоких частот в два уже известных выражения. Исходя из понятия энтропии, он отыскивает — точнее, угадывает — такую формулу 25 октября 1900 г. Она действительно переходит в формулы Вина и Рэлея, но с какими-то неопределенными коэффициентами. Однако это еще не все: нужно ее доказать, понять каким изменениям в теории она соответствует.

И Планк обращается к статистической теории Больцмана: он начинает рассматривать излучающую среду как состоящую из набора отдельных излучателей, вернее осцилляторов (от латинского «осцилляре» — колебаться). И тут он совершает поистине революционный шаг — принимает, что энергия, испускаемая каждым осциллятором, должна быть пропорциональна его частоте. Тогда нужен коэффициент пропорциональности между частотой и энергией, а так как частота измеряется в обратных секундах, то этот коэффициент должен измеряться в эргах (или, сейчас, в джоулях), умноженных на секунду, — энергия на время.

Макс Карл Эрнст Людвиг Планк (1858–1947, Нобелевская премия 1918 г.) — первый физик-теоретик по специальности (до него все физики занимались и экспериментом). Помимо работ по теории квантов, он провел важнейшие исследования в термодинамике, теории относительности (и ввел само это название), вывел законы химического равновесия в газах и разбавленных растворах. С самого начала поддерживал работы Эйнштейна, оставался его старшим товарищем во все времена.

Макс Планк происходил из традиционной прусской семьи военных и священников, один его сын погиб на фронте Первой мировой войны, второй был казнен как участник заговора 1944 г. против Гитлера. Планк был очень религиозен, после 1945 г. он руководил восстановлением науки в Германии.

Такая величина была введена еще Лейбницем и названа функцией действия, а позднее Лагранж, Гамильтон, Якоби показали, что знания этой функции достаточно для построения всех законов механики.

Но Планку нужна не функция действия, а некоторая постоянная величина, и он принимает, что в процессах излучения роль играет постоянная размерности действия, ее квант (от латинского «квантум» — количество), и вычисляет величину, обозначаемую с тех пор латинской буквой h[1] (сейчас чаще используют ħ = h/2π, т. е. в 6,28 раз меньшую), которая обеспечит точный переход к обоим предельным случаям формулы излучения. Как он писал Планк: «После нескольких недель самой напряженной работы в моей жизни тьма, в которой я барахтался, озарилась молнией, и передо мной открылись неожиданные перспективы».

Свою работу Планк скромно зачитывает 14 декабря 1900 г. тихим профессорским голосом на заседании Немецкого физического общества. Той же ночью Генрих Рубенс (1865–1922) пересчитывает экспериментальные данные и ранним утром радует Планка — все сходится! Но они еще не понимают, что произошло…

Этот день, 14 декабря 1900 г., физики считают началом нового, XX в. Отсюда начинается научная революция 1900–1930 гг., полностью изменившая не только физику и связанные с ней науки, но и все научное мировоззрение: по известному определению А. Эйнштейна, это была «драма идей» или, по образному выражению Я. Б. Зельдовича, это была тридцатилетняя война против обывательского «здравого смысла»[2]. И при этом, как нужно отметить, сам Планк по натуре своей не был революционером, позже он писал в письме Р. Вуду, что это был с его стороны «акт отчаяния», предпринятый потому, что «теоретическое объяснение должно было быть найдено любой ценой, сколь бы высокой она ни была».

Когда М. Планк, тогда начинающий студент, обратился к известному физику Ф. И. фон Жолли (1809–1884) за советом по выбору темы исследований, то маститый профессор сказал: «Молодой человек, поищите себе лучше другое поле деятельности. Физика уже закончена, все интересное, что можно было исследовать, уже открыто». Это был не первый, но и не последний случай, когда физику объявляли завершенной, но конца ее и сегодня не видно.

Вывод Планка математически и методологически не был безупречным: и он сам, и другие не раз его пересматривали и улучшали, но главное было уже сделано: в физику, имевшую до того дело только с непрерывными изменениями основных параметров, было введено понятие скачков энергии. (До Планка единственной величиной, которая изменялась скачком, был электрический заряд: открытие электрона показало, что он не может изменяться произвольно.)

Дважды в своей жизни Планк, всегда сдержанный и уравновешенный, выходил из себя: в 1908 г., когда начался многолетний спор с Э. Махом о реальности атомов, и в 1933 г., когда он пытался защитить перед Гитлером своих коллег, изгоняемых из Германии…

3. Эйнштейн: теория квантов

Оценивая открытие Планка, А. Эйнштейн писал: «Именно закон излучения Планка дал первое точное определение абсолютных величин атомов, независимо от остальных предложений… Это открытие стало основой для всех исследований в физике XX в., и с того времени почти полностью обусловило ее развитие».

Но так до поры до времени думали далеко не все — вплоть до 1905 г. открытие Планка почти не упоминается в научной литературе. И так продолжалось до знаменитой статьи Эйнштейна «Об одной эвристической точке зрения, касающейся возникновения и превращения света», появившейся в 1905 г. в том же томе журнала «Анналов физики» (Annalen der Physik), что и его статьи о броуновском движении (о ней мы говорили) и о теории относительности. Статья эта была, по мнению самого Эйнштейна, более революционной, чем создание теории относительности, хотя иногда данную работу цитируют только как теорию фотоэффекта.

Для того чтобы понять суть нововведений Эйнштейна, нужно рассказать о некоторых особенностях фотоэффекта. Явление это было обнаружено Г. Герцем в 1887 г., почти одновременно то же самое наблюдали еще несколько ученых, не понявших сути увиденного. (Вообще-то еще в 1839 г. А. С.Беккерель, дед первооткрывателя радиоактивности, заметил, что если на электрод одного из его гальванических элементов падает свет, то электродвижущая сила элемента меняется, однако никто этим явлением тогда не заинтересовался.) Вскоре начались интенсивные исследования фотоэффекта. Так, Александр Григорьевич Столетов (1839–1896) показал, что существует так называемая красная граница — если длина волны света становится больше определенной величины, своей для каждого металла, то эффект пропадает (1889), он же создал первый фотоэлемент, который включал электрическую цепь при попадании на него света. Дж. Дж. Томсон, а затем Ф. Ленард доказали, что фототок состоит из электронов (1899); было также установлено, что энергия этих электронов не зависит от интенсивности света.

Как же Эйнштейн приступает к этой проблеме?

Эйнштейн великолепно понимает, что явления интерференции и дифракции опровергли корпускулярную картину распространения света и утвердили волновую теорию, но, как он пишет, эти эксперименты говорят только о средних величинах. Поэтому не исключено, что волновые представления могут оказаться недостаточными, когда речь идет о мгновенных процессах, об излучении и поглощении света.

1 2 3 4 5 6 7 8 9 10 ... 66
Перейти на страницу:
На этой странице вы можете бесплатно скачать Наблюдения и озарения или Как физики выявляют законы природы - Марк Перельман торрент бесплатно.
Комментарии