Категории
Самые читаемые

Читаем без скачивания Логическая игра - Льюис Кэрролл

Читать онлайн Логическая игра - Льюис Кэрролл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 50
Перейти на страницу:

Кэрролл одним из первых разработал символический и графический методы решения логических задач, ввёл таблицы истинности и придумал многое другое, что входит в арсенал, или, лучше сказать, составляет вооружение (в арсенале может храниться и устаревшее оружие) современного логика. Эти методы и задачи представлены в «Логической игре», которая открывает настоящий сборник.

Человек парадоксального склада ума, Кэрролл достиг вершины своего научного творчества в двух парадоксах: «Что черепаха сказала Ахиллу» и «Аллен, Браун и Карр», озадачивших и продолжающих озадачивать многих и поныне.

Увидев у своего дядюшки Скеффингтона один из первых любительских фотоаппаратов, Кэрролл не на шутку увлёкся фотографией и достиг на этом поприще немалых успехов, став одним из лучших фотолюбителей своего времени. Эта сторона его жизни представлена в сборнике рассказом «Фотограф на съёмках».

Письма Льюиса Кэрролла к его большим друзьям — маленьким детям — особый, поистине уникальный жанр, не имеющий аналогий и параллелей. Каких только писем нет в его огромном эпистолярном наследии: тут и письма-ворчалки (если воспользоваться терминологией Винни-Пуха), и письма-дразнилки, и письма-сказки, и «зеркальные» письма, и письма, написанные от конца к началу. Прочитайте, и вы убедитесь в этом сами!

Льюис Кэрролл не мог бы сказать о себе словами Байрона: «Проснулся и узнал, что знаменит». Известность пришла к нему не сразу, но, придя, не оставляла его никогда. Самому Кэрроллу слава не доставляла особого удовольствия, причиняя много хлопот. Приходилось спасаться от «охотников за львами», любителей автографов и т. п. Делал это Кэрролл чисто по-кэрролловски, отрицая знакомство… с самим собой («мистер Доджсон не претендует на авторство книг, не подписанных его именем»).

Льюис Кэрролл оставил нам целый мир, сложный и захватывающе интересный. Открыв настоящий сборник, вы сделаете первый шаг, вступая на неведомую вам территорию (наследие Кэрролла далеко не исчерпывается «Алисой»!). Вас ждут интересные открытия. Счастливого пути!

Ю. Данилов

I. ЛОГИЧЕСКАЯ ИГРА

Моему другу — маленькой девочке

Пред взором мысленным моимОдно проходит за другимДней давних смутные виденья.Но образ твой, сколь я ни ждал,Пред мною так и не предсталНи наяву, ни в сновиденьях,Мой милый, нежный друг!

И все чудится поройТвоя улыбка, голос твой,Звучащий где-то вдалеке,И снова время прочь летит,И, словно прежде, вновь лежитТвоя рука в моей руке,Прелестный, юный друг!

Пусть дни мои к концу идут —Немало радостных минутМне было послано судьбой!Лишь ты не знала бы забот,Печалей, горестей, невзгод,О юный друг мой,Милый, нежный друг!

Введение

Своенравная и непокорная, логика отныне укрощена и обуздана.

Чтобы играть в эту игру, необходимо иметь девять фишек: четыре фишки одного цвета и пять — другого. Например, четыре красных и пять черных.

Кроме девяти фишек необходимо также иметь по крайней мере одного игрока. Мне не известна ни одна игра, в которой число участников было бы меньше. В то же время я знаю несколько игр, в которых число игроков больше, чем в нашей игре. Например, чтобы играть в крокет, необходимо собрать команду из двадцати двух игроков. Разумеется, найти одного игрока гораздо легче, чем найти двадцать два игрока. Вместе с тем нельзя не заметить, что хотя одного игрока для нашей игры вполне достаточно, намного интереснее играть в неё вдвоём и помогать друг другу исправлять допущенные ошибки.

Наша игра обладает ещё одним преимуществом. Она не только служит неисчерпаемым источником развлечения (число умозаключений, которые можно вывести, играя в нашу игру, бесконечно), но и позволяет игроку узнавать нечто новое (правда, в весьма умеренных дозах). Впрочем, особого вреда от этого нет, поскольку удовольствия она доставляет неизмеримо больше.

Цвета фишек

Стало вдруг светлым-светло:

Солнце КРАСНОЕ взошло.

А у ночи ЧЁРНЫЙ цвет:

Солнца на небе уж нет.

Глава 1. Старые истины на новый лад

§ 1. Суждения

«Некоторые свежие булочки вкусные».

«Ни одна свежая булочка не вкусная».

«Все свежие булочки вкусные».

Перед вами три суждения — только такие три типа суждений мы и будем использовать в этой игре. Первое, что необходимо сделать, — это научиться изображать их на нашей диаграмме.

Начнём с рассуждения «Некоторые свежие булочки вкусные», но прежде сделаем одно замечание. Оно необычайно важно и понять его сразу не так-то просто, поэтому читать его надо очень внимательно.

В окружающем нас мире имеется много предметов (таких, как «берёзки», «бараны», «бациллы», «быки» и т. д.). Предметы эти обладают множеством признаков (таких, как, например, «белые», «бестолковые», «болезнетворные», «бодливые» и т. п.; в действительности любое свойство, которое «признано» за предметом, или, как ещё говорят, «принадлежит ему», может служить его признаком). Если нам нужно назвать предмет, мы употребляем существительное. Если же нужно назвать какой-нибудь признак, мы употребляем прилагательное. Наверное, найдутся люди, которым захочется спросить: «Может ли существовать предмет, не обладающий никакими признаками?» Это очень трудный вопрос, и я даже не буду пытаться ответить на него. Мы просто гордо отвернёмся и будем хранить презрительное молчание, делая вид, будто он не достоин нашего внимания. Но если вопрос поставлен иначе и люди хотят знать, могут ли существовать признаки, не принадлежащие никаким предметам, то мы сразу же сможем ответить: «Нет, как не могут грудные младенцы самостоятельно совершать поездки по железной дороге!» Ведь не приходилось же вам никогда видеть, как «блестящее» плавает в воздухе или рассыпано по полу, без того, чтобы хоть какой-нибудь предмет не был блестящим?

К чем я веду весь этот длинный (и довольно бессвязный) разговор? А вот к чему. Между именами двух предметов или между именами двух предметов или между именами двух признаков можно вставить слово «есть» или «суть»[1] (или подразумевать, что такое слово вставлено), и при этом результат получится вполне осмысленным. Например, «некоторые свиньи суть жирные животные» или «розовый — это светло-красный». Но если вы вставите слово «есть» или «суть» между именем предмета и именем признака (например, «некоторые свиньи суть розовые»), то ничего хорошего из этого не получится (ибо как может предмет быть признаком?), если тот, с кем вы говорите, не знает заранее, что вы имеете в виду. Мне кажется, что добиться взаимопонимания было бы проще всего, если бы мы условились повторять существительное в конце предложения. В этом случае предложение, если его записать полностью, имело бы вид: «Некоторые свиньи суть розовые (свиньи)». Никаких противоречий при этом не возникает. Итак, чтобы суждение «Некоторые свежие булочки вкусные» имело смысл, необходимо предположить, что оно записано в развёрнутом виде: «Некоторые свежие булочки суть вкусные (булочки)».

Полное суждение содержит два термина: один из них — «некоторые булочки», другой — «вкусные булочки». Термин «некоторые булочки», о котором идёт речь, называется субъектом суждения, термин «вкусные булочки» — предикатом суждения. Наше суждение частное, поскольку в нем говорится не о в всем субъекте, а лишь о его части. Суждения «Ни одна свежая булочка не вкусная» и «Все свежие булочки вкусные» называются общими, поскольку в каждом из них речь идёт обо всем предикате: в первом из них отрицается а во втором утверждается «вкуснота» всего класса «свежих булочек». Наконец, если вы захотите узнать, что же такое суждение, то мы можем предложить вам следующее определение: «Суждение — это предложение, утверждающее, что некоторые или все предметы, принадлежащие определённому классу, называемому субъектом, одновременно являются предметами, принадлежащими другому классу, называемому предикатом» (или что ни один предмет, принадлежащий классу «субъект», не является предметом, принадлежащим классу «предикат»).

Эти девять слов — суждение, признак, термин, суждения, субъект, предикат, частное и общее суждение — окажутся необычайно полезными, если кому-нибудь из ваших приятелей придёт в голову поинтересоваться, не приходилось ли вам когда-нибудь изучать логику. Не забудьте употребить в своём ответе все девять слов, и ваш приятель удалится совершенно потрясённым, «став не только мудрее, но и печальнее». Взгляните теперь на меньшую диаграмму (с. 9). Предположим, что она нарисована на подносе, который вмещает все булочки в мире (разумеется, размеры его должны быть достаточно велики). Пусть все свежие булочки находятся на верхней половине диаграммы (помеченной буквой x), а все остальные (т. е. не свежие) — на нижней (помеченной буквой x'). На нижней половине окажутся чёрствые булочки, окаменевшие булочки, допотопные булочки (если таковые существуют — лично мне их видеть не приходилось) и т. д. Сделаем ещё одно предположение: будем считать, что все вкусные булочки находятся на левой половине диаграммы (помеченной буквой y), а все прочие (т. е. не вкусные) булочки — на правой половине (помеченной буквой y'). Таким образом, x временно означает «свежие», x' — «несвежие», y — «вкусные» и y' — «невкусные».

1 2 3 4 5 6 7 8 9 10 ... 50
Перейти на страницу:
На этой странице вы можете бесплатно скачать Логическая игра - Льюис Кэрролл торрент бесплатно.
Комментарии