Читаем без скачивания Приключения радиолуча - Валерий Родиков
Шрифт:
Интервал:
Закладка:
Однако эту связь в опытах Морзе и Ландсея строго нельзя назвать «беспроводной». Проводник все-таки наличествовал. Им была соленая морская вода. И хотя идея «водяной» связи увлекала и других изобретателей, но практического применения она так и не нашла.
Вспомнили о ней в 1870 году во время осады Парижа пруссаками. Город оказался блокированным. И вот, чтобы установить связь между штабом защитников города и предместьем Сен-Дени, два французских физика, Бурбуз и д'Альмеида, решили использовать в качестве проводов не воду, а землю. Ведь почва, как и соленая вода, тоже обладает электропроводностью.
К концу января 1871 года приборы были изготовлены, и д'Альмеида вылетел на воздушном шаре, которым ученые сами изготовили, из осажденного города в Сен-Дени для установки станции. На обоих концах, и в Париже и в Сен-Дени, приборы были соединены с металлическими пластинами, зарытыми в землю. Однако станции работали плохо и практической пользы не принесли.
Пытался решить задачу беспроводной связи и знаменитый американский изобретатель Томас Эдисон. В 1885 году он испытал систему телеграфной связи между берегом и кораблем и между движущимся поездом и станционным зданием. 14 мая 1885 года он подал заявку на «прибор для передачи без проводов сигналов азбуки Морзе», а в декабре 1891 года получил патент. «Корабли на океане, — писал в заявке изобретатель, — могут сообщаться между собой и с сушей: на вершине мачт будут устанавливаться металлические щиты, которые путем индукции вызывают электрические вибрации или электрические волны (подобные световым), действующие на электрический прибор на отдаленном судне, имеющем подобный же приемный металлический щит».
Максимальная дальность связи, которой удалось достичь Эдисону, составляла 200 метров. Но это была отнюдь не радиосвязь. Во вторичной цепи индукционной катушки эдисоновского передатчика не было искрового разряда, возбуждавшего, как у Герца, высокочастотные колебания в излучающем элементе — вибраторе, а следовательно, и не было еще не открытых в то время «лучей Герца» — радиоволн. Связь получилась за счет наводки, вызванной индукцией. А поле индукции убывает быстро — квадратично, а не линейно, как при электромагнитной волне, поэтому Эдисону и не удалось добиться связи на большее расстояние. Правда, для железнодорожников данное обстоятельство не имело особого значения, поскольку индукционная связь осуществлялась между металлической крышей вагона и телеграфными проводами, натянутыми вдоль путей.
И хотя изобретение Эдисона фактически оказалось устройством индукционного типа и не использовало радиоволн, тем не менее оно мешало итальянцу Гульельмо Маркони — создателю первых линий дальней радиосвязи, в его намерениях монополизировать все, что к ней относится. И в 1903 году ему пришлось купить патент Эдисона.
Примерно в одно время с Эдисоном занимался беспроводной связью и главный инженер Британского почтового ведомства Уильям Прис. Он обратил внимание на то, что расположенные по соседству телефонные и телеграфные линии влияют друг на друга. Так, телефонный разговор по одной линии хорошо прослушивался в других линиях на расстоянии до 400 метров, а в отдельных случаях до двух километров. Эти наводки, вызываемые электромагнитной индукцией, он попытался использовать во благо, и не совсем безуспешно. Его опыты легли в основу одного из способов морской навигации. По дну бухты или залива прокладывался изолированный кабель, и по нему передавались опорные сигналы, которые улавливались проходящим над кабелем кораблем и служили ему как бы путеводной нитью.
Занимался вплотную беспроводной связью знаменитый ученый-электрик Никола Тесла и многие другие Время настойчиво требовало связи без проводов, связи на большие расстояния, не зависимой от погоды. Особенно в ней нуждались мореплаватели: ведь в море за кораблем провода не протянешь. А впечатления, сколь трудно и дорого прокладывать кабель через океан и как непросто его эксплуатировать, были еще живы в памяти современников.
ОТ ИДЕИ К ИЗОБРЕТЕНИЮ
Часто считают, что главное в изобретении — идея, а осуществление ее — дело сравнительно второстепенное. Но это не всегда так, особенно когда речь идет об изобретении такого масштаба, как радио. Если посмотреть на опыты Герца с дистанции сегодняшних дней, то в них можно увидеть зародыши идеи радиосвязи и радиолокации. Теперь-то мы знаем, сколь длинен был путь от идеи до изобретения. В особенности это касается радиолокации.
В подтверждение сказанного приведу один любопытнейший отрывок из статьи Уильямса Крукса. Она и сейчас читается, словно популярный учебник по радиотехнике. Даже не верится, что статья опубликована почти сто лет назад, в 1892 году. Судите сами…
«До самого последнего времени мы серьезно не исследовали, не совершаются ли постоянно вокруг нас колебания эфира более длинные, чем те, которые воздействуют на нас как свет. Но исследования Лоджа в Англии и Герца в Германии говорят о почти бесконечном диапазоне эфирных колебаний или электрических лучей, от длин волн в тысячи миль до нескольких футов. Здесь перед нами развертывается новый и удивительный мир, который трудно представить себе не обладающим возможностями передачи и приема мыслей… (Как видим, Крукс высказывает гипотезу об электромагнитном характере того, что сейчас называют телепатией. — В. Р.).
…Любые два друга, живущие в пределах радиуса чувствительности их приемных аппаратов, выбрав предварительную длину волны и настроив свои аппараты для взаимного приема, могли бы таким образом сообщаться между собой столь долго и часто, как они того захотели бы, регулируя импульсы для образования длинных и коротких интервалов по обычному коду Морзе. На первый взгляд возражением против такого плана могло бы быть отсутствие секретности.
Если предполагается, что корреспонденты находятся на расстоянии одной мили друг от друга, то передатчик будет посылать волны во всех направлениях, заполняя ими сферу радиусом в одну милю, и поэтому любой человек, живущий в пределах одной мили от передатчика, сможет принять эти сообщения. Это можно было бы устранить двумя путями. Если точное месторасположение обоих, передающего и принимающего, аппаратов хорошо известно, лучи могли бы быть сконцентрированы с большей или меньшей точностью на приемник. Если, однако, передатчик и приемник находятся в движении и, следовательно, нельзя применить линзовые устройства, то тогда корреспонденты должны настроить свои аппараты на определенную длину волны, скажем, например, в 50 ярдов. Я полагаю, что прогресс открытий даст аппараты, способные перестроиться путем поворачивания винта или изменения длины проволоки так, что станет возможным принимать волны любой заранее предусмотренной длины. Таким образом, настроенный на пятьдесят ярдов передатчик мог бы излучать, а приемник принимать лучи с длиной волны от сорока пяти до пятидесяти ярдов и не принимать никаких других лучей. Считая, что полный диапазон Длин волн, из которого можно будет производить выбор, простирается от нескольких футов до нескольких тысяч миль, можно будет иметь достаточную секретность. Ради любопытства даже самый настойчивый человек, наверное, отказался бы от просмотра миллионов длин волн с очень малым шансом найти длину волны, используемую его друзьями, корреспонденцию коих он хотел бы перехватить. Посредством «кодирования» сообщений даже этот отдаленный шанс тайного перехвата можно было бы предотвратить.
Это не просто грезы мечтательного ученого. Все необходимое для реализации этого в повседневной жизни находится в пределах возможностей открытия, и все это так разумно и так ясно в ходе тех исследований, которые деятельно ведутся сейчас в каждой европейской столице, что в любой день мы можем услышать о том, как из области рассуждений это перешло в область неоспоримых фактов…»
Прочтя отрывок, специалисты скажут, что Крукс предугадал частотное разделение каналов связи и возможность их засекречивания.
В статье передана обстановка ожидания открытия. Основания были веские. Незадолго до ее публикации был придуман более чувствительный и удобный, чем у Герца, индикатор радиоволн. Сделал его французский физик Эдуард Бранли. В 1890 году он заметил, что мелкие металлические опилки обладают свойством резко менять свое электрическое сопротивление, когда неподалеку от них случался электрический разряд, который, как мы знаем, всегда сопровождается излучением радиоволн.
Бранли собрал лабораторный прибор для обнаружения электромагнитных волн, который назвал радиокондуктором. Так впервые слово «радио» породнилось с электромагнитными волнами.
Прибор содержал стеклянную трубку с двумя металлическими электродами, между которыми были насыпаны металлические опилки, батарею и гальванометр. Когда радиоволна достигала прибора, опилки сцеплялись, их сопротивление резко уменьшалось, и стрелка гальванометра отклонялась. Но опилки сохраняли низкое сопротивление и после воздействия электромагнитной волны. Чтобы привести их в первоначальное состояние, стеклянную трубку приходилось встряхивать.