Категории
Самые читаемые
💎Читать книги // БЕСПЛАТНО // 📱Online » Документальные книги » Прочая документальная литература » Рождение сложности: Эволюционная биология сегодня - Александр Марков

Читаем без скачивания Рождение сложности: Эволюционная биология сегодня - Александр Марков

Читать онлайн Рождение сложности: Эволюционная биология сегодня - Александр Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 20 21 22 23 24 25 26 27 28 ... 96
Перейти на страницу:

 Основные различия между имеющимися гипотезами происхождения эукариот касаются происхождения "ядерно-цитоплазматического компонента" эукариотической клетки. Ясно, что его предком был какой-то крупный одноклеточный организм, который "проглотил" сначала будущих митохондрий, а потом будущих пластид, и превратил их в своих внутренних "сожителей"-симбионтов. Или, может быть, они не были проглочены, а проникли в него по собственной инициативе (подобно тому, как сейчас это делают внутриклеточные паразитические бактерии). Проблема в том, что этот организм-хозяин, насколько мы можем судить, был не очень похож на современных, доживших до наших дней прокариот. Он обладал рядом уникальных свойств.

 Существует несколько версий его происхождения. Одни эксперты считают, что это была архея, возможно, близкая к современным термоплазмам или ферроплазмам, о которых мы немного рассказали в главе "Происхождение жизни". Все уникальные свойства развились уже после приобретения внутренних симбионтов (митохондрий) и объединения разнородных геномов в единый ядерный геном. Согласно другой гипотезе, предком цитоплазмы и ядра эукариот был представитель не архей и не бактерий, а некоей особой вымершей группы прокариот. Согласно третьей точке зрения, это был химерный организм, образовавшийся в результате слияния клеток нескольких разных архей и бактерий. Впрочем, дело могло обойтись и без слияния — оказалось достаточно очень интенсивного обмена генами между разными микробами, чтобы их свойства перемешались в одной клетке (о горизонтальном генетическом обмене подробно рассказано в главе "Наследуются ли приобретенные признаки?").

Распределение белковых семейств в трех надцарствах живой природы. Площади кругов соответствуют количеству семейств белков, встреченных у представителей данного надцарства. Как видно из рисунка, 1157 белковых семейств являются общими для всех трех надцарств, 2372 встречены только у эукариот, 831 есть у эукариот и бактерий, но не у архей, и т. д. (из статьи: Марков А. В., Куликов А. М. Происхождение эвкариот: выводы из анализа белковых гомологий в трех надцарствах живой природы // Палеонтол. журн. 2005. № 4. С. 3-18. http://evolbiol.ru/markov_kulikov.htm).

 У каждой из версий, понятное дело, есть свои аргументы и свои сторонники. Лично мне больше всего нравится "химерная" теория. По крайней мере, именно к ней склонил нас с А. М. Куликовым (Институт биологии развития РАН) сравнительный анализ семейств белков, имеющихся у представителей трех надцарств живой природы — архей, бактерий и эукариот. Белки архейного происхождения, хотя их не очень много (114 семейств, см. рисунок), играют в эукариотической клетке ключевую роль. Именно они отвечают за работу с генетической информацией — транскрипцию, трансляцию, репликацию. Сюда относятся и НК-полимеразы, о которых шла речь выше, а также большинство белков, входящих в состав рибосом. Это позволяет предполагать, что в основе ядерно-цитоплазматического компонента эукариот лежала именно архея, а не бактерия и не какая-то особая "третья" группа прокариот, не дожившая до наших дней.

 Многие белки бактериального происхождения попали в эукариотическую клетку вместе с "проглоченными" симбионтами — предками митохондрий и пластид. Однако среди "бактериальных" белков цитоплазмы и ядра есть и много таких, которые, скорее всего, не могли быть получены таким способом. Речь идет о тех семействах белков, которые есть у эукариот и есть также у бактерий, но не у тех, от которых произошли органеллы, а у каких-нибудь других. Иными словами, в эукариотической клетке существуют "бактериальные" семейства белков, которые не могли быть получены первыми эукариотами ни от "проглоченных" альфапротеобактерий, ни от цианобактерий — предков пластид. Но они, однако, могли быть получены от других бактерий — в особенности от различных бродильщиков (гетеротрофных бактерий, сбраживающих углеводы в бескислородных условиях). Похоже, именно от бродилыциков эукариоты получили, в частности, ферменты гликолиза — так называется важнейший энергетический процесс, происходящий в цитоплазме эукариотической клетки. Суть его в том, что молекула глюкозы расщепляется ("сбраживается") без использования кислорода до пировиноградной кислоты (пирувата), и при этом происходит синтез АТФ. Пируват является для цитоплазмы конечным продуктом обмена, "отходом жизнедеятельности". Но пируват затем попадает в митохондрии, которые "сжигают" его в своей кислородной печке с огромным выходом энергии (которая тоже используется для синтеза АТФ). В совокупности бескислородный гликолиз, происходящий в цитоплазме, и кислородное дыхание, происходящее в митохондриях, являются главными источниками АТФ для эукариотической клетки.

Распределение эукариотических белков архейного и бактериального происхождения по шести функциональным группам: 1 — синтез белка, 2 — репликация, транскрипция, модификация ДНК и РНК, 3 — сигнальные и регуляторные белки, 4 — образование мембранных пузырьков, 5 — транспортные и сортировочные белки, 6 — обмен веществ.

 И вот на основе всех этих данных, а также с учетом того, что известно о строении и функционировании микробных сообществ, вырисовывается следующий возможный сценарий превращения сообщества прокариот в эукариотическую клетку (конечно, надо помнить, что это только один из возможных сценариев).

Этапы великой драмы

В начале, как мы уже знаем, было сообщество. Это был трехслойный бактериальный мат, почти такой же, как современные бактериальные маты, с той разницей, что верхний его слой образовывали не кислородные (оксигенные), а бескислородные фотосинтетики. Это были предки цианобактерий, еще не научившиеся использовать в качестве донора электрона воду. Они по старинке потребляли сероводород и выделяли серу или сульфаты.

 Второй слой составляли другие аноксигенные фотосинтетики, в том числе альфапротеобактерии — предки нынешних пурпурных бактерий (а заодно и митохондрий, но об этом чуть позже). Эти розовые создания и сегодня живут в бактериальных матах под слоем цианобактерий, потому что питаются более длинноволновым светом, который легко проходит сквозь верхний зеленый слой сообщества.

 В третьем слое жило много всякой мелочи. Здесь были бактерии-бродильщики, которые сбраживали избыточную органику, производимую верхними фотосинтезирующими слоями. Они выделяли молекулярный водород, который использовался для восстановления сульфатов бактериями-сульфатредукторами. В результате их деятельности в сообществе пополнялись запасы сероводорода, необходимого двум верхним слоям. Здесь же подвизались и археи-метаногены, которые с удовольствием использовали производимый бродильщиками водород для восстановления углекислого газа и синтеза метана. Метаногены и сегодня живут практически везде, где нет кислорода и есть бродильщики, — например, у нас в кишечнике.

 Сообщество было вполне устойчивым и могло спокойно существовать в таком виде сотни миллионов лет (что оно, по всей видимости, и делало). Но потом цианобактерии "изобрели" кислородный фотосинтез (см. предыдущую главу), начали выделять кислород, и спокойному существованию пришел конец. Для всех древних форм земной жизни — и для всех без исключения членов нашего древнего сообщества — кислород был опаснейшим ядом. Даже самим цианобактериям было не очень приятно жить в отравленной — с их точки зрения — среде. Но возможность наконец-то избавиться от "сероводородной зависимости" перевешивала все прочие соображения. Конечно, цианобактерии поступили крайне эгоистично — ради собственной независимости они чуть не отравили все живое на планете, но в конечном счете их эгоизм оказался полезен для биосферы. Ведь без него наша Земля и по сей день оставалась бы "планетой микробов".

 К счастью для цианобактерий, они очень быстро нашли способ обезвреживать ядовитые продукты собственной жизнедеятельности. И тот же самый способ — причем даже с большей эффективностью — применили для защиты от яда обитатели второго слоя, пурпурные бактерии. Скорее всего, тут не обошлось без горизонтального обмена генами. В чем же состоял этот способ? Как обычно, эволюция слепила новую молекулярную "машинку" из того, что первым подвернулось. Для эволюции это очень характерный и легко узнаваемый стиль. Поскольку в данном случае дело касалось фотосинтезирующих микробов, в ход пошел аппарат фотосинтеза. Небольшая модификация некоторых частей этого аппарата привела к возникновению системы кислородного дыхания.

 Как клетки научились дышать. Упрощенно говоря, в процессе фотосинтеза квант света выбивает из молекулы хлорофилла электрон. Этот "возбужденный" электрон затем передается "из рук в руки" по цепочке белков, постепенно теряя свою энергию, которая идет на синтез АТФ. В конце концов электрон возвращается на место, то есть передается молекуле хлорофилла — той же самой или другой.

1 ... 20 21 22 23 24 25 26 27 28 ... 96
Перейти на страницу:
На этой странице вы можете бесплатно скачать Рождение сложности: Эволюционная биология сегодня - Александр Марков торрент бесплатно.
Комментарии