Категории
Самые читаемые

Читаем без скачивания 1.Внутреннее устройство Windows (гл. 1-4) - Марк Руссинович

Читать онлайн 1.Внутреннее устройство Windows (гл. 1-4) - Марк Руссинович

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 22 23 24 25 26 27 28 29 30 ... 61
Перейти на страницу:

Для просмотра содержимого PCR воспользуемся командой !pcr отладчика ядра.

K сожалению, Windows не поддерживает поле Irql на платформах, не использующих отложенные IRQL, поэтому в большинстве систем это поле всегда содержит 0.

Так как изменения IRQL процессора существенно влияют на функционирование системы, они возможны только в режиме ядра. Потоки пользовательского режима не могут изменять IRQL процессора. Это значит, что при выполнении потоков пользовательского режима значение IRQL процессора всегда равно passive. Только при выполнении кода режима ядра IRQL может быть выше этого уровня.

Каждый уровень прерывания имеет определенное назначение. Так, ядро генерирует межпроцессорное прерывание (interprocessor interrupt, IPI), чтобы потребовать выполнения какой-либо операции от другого процессора, например, при диспетчеризации некоего потока или обновлении кэша ассоциативного буфера трансляции [translation look-aside buffer (TLB) cache]. Системный таймер через регулярные промежутки генерирует прерывания, на которые ядро реагирует обновлением системного времени, и это используется для измерения продолжительности выполнения потока. Если аппаратная платформа поддерживает два таймера, то для измерения производительности ядро добавляет еще один уровень прерываний от таймера. HAL поддерживает несколько уровней запросов прерываний для устройств, управляемых прерываниями; конкретное число таких уровней зависит от процессора и конфигурации системы. Ядро использует программные прерывания для инициации планирования потоков и асинхронного вмешательства в выполнение потока.

Увязка прерываний с IRQL

Уровни IRQL и запросы прерываний (IRQ) — вещи разные. Концепция IRQL в архитектурах, на которых работает Windows, не реализована аппаратно. Тогда возникает вопрос как Windows определяет, какой IRQL следует присвоить прерыванию? Ответ нужно искать в HAL. B Windows за определение устройств на конкретной шине (PCI, USB и т. д.) и назначение им прерываний отвечают драйверы устройств особого типа — драйверы шин. Драйвер шины сообщает эту информацию диспетчеру Plug and Play, и тот, учитывая приемлемые для других устройств прерывания, принимает решение о конкретных прерываниях, выделяемых каждому устройству. Далее он вызывает HAL-функцию HalpGetSystemInterruptVector, которая увязывает прерывания со значениями IRQL.

Этот алгоритм неодинаков в различных версиях HAL. B однопроцессорных х86-системах HAL выполняет прямую трансляцию: IRQL данного вектора прерывания вычисляется путем вычитания значения вектора из 27. Таким образом, если устройство использует 5-й вектор прерывания, его ISR выполняется при IRQL, равном 22. B многопроцессорной х86-системе преобразования более сложны. APIC поддерживает более 200 векторов прерываний, поэтому при трансляции «один в один» имеющихся IRQL окажется недостаточно. Многопроцессорная версия HAL присваивает IRQL векторам прерываний, циклически перебирая значения из диапазона IRQL устройств (device IRQL, DIRQL). B итоге на многопроцессорной х86-системе не так-то просто предсказать или выяснить IRQL, назначаемый IRQ. Наконец, в x64- и IА64-системах HAL вычисляет IRQL для IRQ путем деления вектора прерывания, назначенного данному IRQ, на 16.

Предопределенные IRQL

Давайте повнимательнее приглядимся к предопределенным IRQL, начиная с самого верхнего уровня схемы, представленной на рис. 3–5.

Уровень «high» (высокий) используется ядром, только если оно останавливает систему в функции KeBugCheckEx и маскирует все прерывания.

Уровень «power fail» (отказ электропитания) был заложен еще в самый первый проект Microsoft Windows NT Он определяет поведение системы при отказе электропитания, но никогда не применялся.

Уровень «interprocessor interrupt» (межпроцессорное прерывание) используется для того, чтобы запрашивать от другого процессора выполнение какой-либо операции, например, при постановке в очередь прерывания DISPATCH_EVEL для планирования конкретного потока к выполнению, при обновлении кэша TLB, завершении работы или крахе системы.

Уровень «clock» (часы) используется для системных часов, с помощью которых ядро отслеживает время суток, измеряет и распределяет процессорное время между потоками.

Уровень «profile» (профиль) используется системным таймером реального времени, если активизирован механизм профилирования ядра (kernel profiling), т. е. измерения его производительности. Когда он активен, обработчик ловушки профилирования регистрирует адрес команды, выполнявшейся на момент прерывания. Co временем создается таблица адресов, которую можно извлечь и проанализировать с помощью соответствующих утилит. Вы можете скачать утилиту Kernrate, позволяющую просматривать статистику, полученную при использовании механизма профилирования ядра. Подробнее об этой утилите см. описание эксперимента с Kernrate.

Уровень «device» (устройство) применяется для задания приоритетов прерываний от устройств (о принципах увязки аппаратных прерываний с IRQL см. предыдущий раздел).

Прерывания уровней «DPC/dispatch» и «APC» являются программными; они генерируются ядром и драйверами устройств (о DPC и APC будет рассказано позже).

Самый низкий уровень IRQL, «passive» (пассивный), на самом деле вообще не является уровнем прерывания. При этом значении IRQL потоки выполняются обычным образом и могут возникать любые прерывания.

ЭКСПЕРИМЕНТ: применение утилиты Kernrate

Утилита профилирования ядра (Kernrate) позволяет включать таймер профилирования системы, собирать образцы кода, выполняемого при срабатывании таймера, и выводить сводную информацию, отражающую распределение процессорного времени по образам файлов и функциям. Ee можно использовать для отслеживания процессорного времени, потребляемого индивидуальными процессами, и/или времени, проведенного в режиме ядра независимо от процессов (например, для выполнения процедур обслуживания прерываний). Профилирование ядра полезно, когда вы хотите выявить точки, в которых на выполнение кода тратится больше всего процессорного времени.

B своей простейшей форме Kernrate сообщает, сколько процессорного времени было использовано каждым модулем ядра (Ntoskrnl, драйверами и т. д.). Попробуйте, к примеру, выполнить следующие операции.

1. Откройте окно командной строки.

2. Введите cd c: program fileskrviewkernrates.

3. Введите dir. (Вы увидите образы kernrate для каждой платформы.)

4. Запустите образ, который подходит для вашей платформы (без аргументов или ключей). Например, Kernrate_i386_XP.exe — это образ для Windows XP на платформе x86.

5. Пока Kernrate выполняется, поделайте что-нибудь в системе. Скажем, запустите Windows Media Player и проиграйте музыку, запустите игру, интенсивно работающую с графикой, или перечислите содержимое каталога на удаленном сетевом ресурсе.

6. Нажмите Ctrl+C, чтобы остановить Kernrate. Это заставит Kernrate вывести статистику за прошедший период.

Ниже приведена часть вывода Kernrate, когда выполнялся Windows Media Player, воспроизводивший дорожку с компакт-диска.

Сводные данные показывают, что система провела 11,7 % времени в режиме ядра, 30,2 % в пользовательском режиме, 58,1 % в простое, 6,4 % на уровне DPC и 1,3 % на уровне прерываний (interrupt level). Модуль, чаще всего требовавший к себе внимания, был GV3.SYS, драйвер процессора для Pentium M (семейства Geyserville). Он используется для сбора информации о производительности, поэтому и оказался на первом месте. Модуль, занявший второе место, — Smwdm.sys, драйвер звуковой платы на компьютере, где проводился тест. Это вполне объяснимо, учитывая, что основную нагрузку в системе создавал Windows Media Player, посылавший звуковой ввод-вывод этому драйверу.

Если у вас есть файлы символов, вы можете исследовать индивидуальные модули и посмотреть, сколько времени было затрачено каждой из их функций. Например, профилирование системы в процессе быстрого перемещения окна по экрану давало такой вывод (здесь приведена лишь его часть):

C: Program FilesKrViewKernrates›Kernrate_i386_XP.exe — z ntoskrnl — z win32k

B данном случае самым «прожорливым» был модуль Win32k.sys, драйвер системы, отвечающей за работу с окнами. Второй в списке — видеодрайвер. И действительно, основная нагрузка в системе была связана с рисованием окна на экране. B детальном выводе для Win32k.sys видно, что наиболее активна была его функция EngPaint, основная GDI-функция для рисования на экране.

Ha код, выполняемый на уровне «DPC/dispatch» и выше, накладывается важное ограничение: он не может ждать освобождения объекта, если такое ожидание заставило бы планировщик подключить к процессору другой поток (а это недопустимая операция, так как планировщик синхронизирует свои структуры данных на уровне «DPC/dispatch» и, следовательно, не может быть активизирован для выполнения перераспределения процессорного времени). Другое ограничение заключается в том, что при уровне IRQL «DPC/ dispatch» или выше доступна только неподкачиваемая память. Ha самом деле второе ограничение является следствием первого, так как обращение к отсутствующей в оперативной памяти странице вызывает ошибку страницы. Тогда диспетчер памяти должен был бы инициировать операцию дискового ввода-вывода, после чего ждать, когда драйвер файловой системы загрузит эту страницу с диска. Это в свою очередь вынудило бы планировщик переключить контекст (возможно, на поток простоя, если нет ни одного пользовательского потока, ждущего выполнения). B результате было бы нарушено правило, запрещающее вызов планировщика в таких ситуациях (поскольку при чтении с диска IRQL все еще остается на уровне «DPC/dispatch» или выше). При нарушении любого из этих двух ограничений происходит крах системы с кодом завершения IRQL_NOT_LESS_OR_EQUAL (подробнее о кодах завершения при крахе системы см. главу 4). Кстати, нарушение этих ограничений является довольно распространенной ошибкой в драйверах устройств. Локализовать причину ошибок такого типа помогает утилита Driver Verifier, о которой будет подробно рассказано в разделе «Утилита Driver Verifier» главы 7.

1 ... 22 23 24 25 26 27 28 29 30 ... 61
Перейти на страницу:
На этой странице вы можете бесплатно скачать 1.Внутреннее устройство Windows (гл. 1-4) - Марк Руссинович торрент бесплатно.
Комментарии