Читаем без скачивания Разумная жизнь во Вселенной - Юрий Мизун
Шрифт:
Интервал:
Закладка:
Диапазон температур, в котором SO2 находится в жидком состоянии, простирается от — 75,5 до — 10,2 °C. Это при давлении в одну атмосферу. Если давление меньше, то он сужается. На планетах малой массы атмосферное давление, конечно, меньше одной атмосферы, то есть меньше атмосферного давления на Земле. Что касается скрытой теплоты, то она как для плавления, так и для парообразования ниже, чем для воды. Это 27 и 93 кал/г соответственно. Но при низких температурах приток тепла невелик. Так что колебания температуры должны быть намного меньше, чем на Земле. Поэтому роль величины теплоты скрытого перехода в другое состояние значительно меньше, чем в условиях Земли.
Рассмотрим непротонный растворитель N2O4. Это четыре-хокись азота. Он для азотной кислоты HNO3 представляет собой то же самое, что SO2 для сернистой кислоты. Этот непротонный растворитель специалисты оценивают как хороший. Он образуется в кислородно-азотной атмосфере при разрядке молний. Он может также выделяться при извержении вулканов. Но ожидать, что на планете его окажется очень много (как воды на Земле), не приходится. N2O4 замерзает при температуре — 11 °C. Это мало отличается от температуры замерзания воды (0 °C). N2O4 при низких температурах существует наряду с сернистым ангидридом. В нем четырехокись азота N2O4 нерастворима. Поэтому при низких температурах она должна вымерзать и оседать на дно морей, которые состоят из SO2. При этом она будет представлять из себя что-то вроде песка.
В аспекте жизни специалисты рассматривают и цианистоводородную кислоту HCN. Она имеет схожие температурные пределы жидкой фазы (от –13,4 до +25,6 °C). Она является протонным растворителем. Полагают, что на небольших планетных телах может находиться значительное количество этой кислоты. Это тяжелые молекулы (их молекулярный вес равен 27), поэтому им трудно покинуть планету и улетучиться в космос. Вода и аммиак почти вдвое легче. Поэтому небольшими порциями они улетучиваются и покидают Землю.
Как известно, многие цианистые соединения для земной жизни, основанной на воде, ядовиты. Но очень важно, что характерные водные группы замещаются цианистыми. Это свидетельствует о некотором сродстве. Связи C — N имеют фундаментальное значение в белках и некоторых других органических веществах.
Дипольный момент цианистоводородной кислоты HCN очень велик. Он равен 2,8, тогда как у воды он равен 1,85, а у аммиака — 1,47. Диэлектрическая постоянная у кислоты равна 123. У аммиака — 22, а у воды — 81,1. Это свидетельствует о том, что цианистоводородная кислота является высококачественным ионизирующим растворителем. В этой кислоте металлы либо плохо растворимы, либо вообще не растворимы. Цианистоводородная кислота создает ионы Н+ и CN—. Поэтому в жидкой кислоте серная и соляная кислоты остаются кислотами. А все цианиды являются основаниями.
Дициан С2N2, как полагают, будет атмосферным газом. Он должен принимать участие в реакциях с выделением энергии, как на Земле это происходит при окислении. Если мы заменим воду в нашей (земной) органической химии на HСN, то получим цианистоводородный аналог этой химии. При этом главным элементом молекулярных цепочек остается углерод. Скрытая теплота плавления и скрытая теплота парообразования у HCN имеют вполне приемлемые величины с точки зрения жизни. Они равны соответственно 74 и 323 кал/г. HCN является хорошим теплоизолятором, ее диэлектрическая постоянная значительна. Поэтому жизнь, основанная на цианистом водороде вполне возможна.
Из сказанного выше ясно, что при температурах между 0 °C и –100 °C возможны различные альтернативные схемы органической химии. Обратите внимание на то, что имеются органические растворители с низкой точкой замерзания. Это метиламин CaH3NH2, который замерзает при температуре — 92,5 °C, и метиловый спирт CH3OH. Они вполне могут образоваться в атмосфере, которая первоначально состояла из углеводородов, аммиака и воды. Соляная кислота HCl замерзает при температуре –111 °C. Химически она подобна HF. Однако как растворитель она хуже, чем HF.
Специалисты большие надежды возлагают на окись фтора F2O. Она замерзает при — 224 °C и кипит при — 145 °C. Как ни странно, она является структурным аналогом воды. У F2O связи образуют углы, равные около 105°. У воды они равны 104°. Можно сказать, что фтор — это водород наоборот. Правда, его атомный номер 9, а атомный вес 19. Валентность фтора равна единице, однако вместо одного электрона на внешней оболочке он имеет семь. Ему не хватает одного электрона для того, чтобы иметь электронную структуру инертного газа. Но так как фтор образует ковалентную связь с кислородом и делит с ним электрон, то получается почти такое же распределение зарядов, как и у водорода. Значит F2О должна быть сильно полярным соединением, подобным воде. Она является хорошим ионизирующим растворителем. Само диссоциация (саморазрыв) F2О происходит по такой схеме:
2F2O ^ F3O» + FO+.
Характерными ионами являются F— и FO+. В этом растворителе должны растворяться фтористые соединения, включая BF3 и HF. Эти соединения имеют свойства кислот. Растворяется и вода. Но она дает раствор с основанием.
Представляют интерес и другие соединения. Это этилен C2Н4, который замерзает при –169 °C; окись углерода СО, замерзающая при –199 °C. Что касается элементарных газов, то кислород имеет точку замерзания –210 °C, азот –219 °C, фтор –223 °C, неон –248,7 °C. Водород замерзает при температуре –259 °C, гелий при –273 °C. Это близко к абсолютному нулю. Три последних газа при атмосферном давлении кипят соответственно при — 246,3 °C, — 252,8 °C и –268, 98 °C. Если давление меньше, то они закипают при еще более низких температурах. Но ниже точки замерзания F2O будет существовать, по крайней мере, неон — гелий-водородная атмосфера. Трудно представить, чтобы температура планеты опустилась ниже — 220 °C. Все-таки тепло поступает как от звезды (Солнца), так и из внутренней части планеты. Поэтому можно предполагать, что под покровом атмосферы из неона, водорода и гелия, а также паров других газов окись фтора остается жидкой. Специалисты считают, что жизнь в диапазоне температур –200 °C и –150 °C вполне возможна. Но это не земная жизнь, а совсем другая, какая-нибудь цианистая. И проблема не в том, что нет нужного растворителя. Их более чем достаточно. Проблема в том, что созданные химические структуры не смогут оперативно реагировать на изменение условий окружающей среды. Другими словами, молекулы не будут лабильными, чувствительными, поскольку при таких низких температурах все соединения слишком устойчивы. Строить жизнь можно только из молекул со слабыми связями. Только они могут обеспечить требуемое состояние непрерывного обновления даже при столь низких температурах. Инертные газы вполне отвечают этим требованиям. Более того, инертные (благородные) газы являются самыми распространенными элементами во Вселенной. На Земле их мало только потому, что Земля не сумела их удержать и они улетучились в космос. Гелий He, аргон Ar, неон Ne, криптон Kr, ксенон Xe и радон Rn не вступают в обычные химические соединения только потому, что их внешние электронные оболочки полностью заполнены. Но когда атомы превращаются в ионы под действием электрических разрядов или коротковолнового излучения или же под действием космических лучей (это на самом деле высокоэнергичные космические заряженные частицы), могут образовываться ионные соединения, и весьма устойчивые. Так, известны гелий-водородные ионы типа HeH+ и HeH2+.
Специалисты возлагают большие надежды на координационные соединения, в которых электроны с заполненной внешней оболочкой инертного газа захватываются на пустые места в незаполненной оболочке активного атома. При обычных температурах такие связи очень слабы. Поэтому они легко разрушаются при колебании молекул или же при столкновениях, которые вызваны тепловыми движениями. Но при температурах –150 °C ситуация кардинально меняется. Движения настолько замедленны, что даже малые силы способны удерживать атомы.
Для биологического растворителя F2O подходят молекулы трехфтористого аргон-бора. В нем аргон действует как связывающее звено между группами BF2. Типичное соединение имеет формулу A»–4BF3. Связь осуществляется и с помощью следующего механизма. Атом инертного газа в присутствии сильного диполя сильно поляризуется. Поэтому он сам начинает действовать как диполь. Ясно, что при этом он действует на первоначальный диполь. Происходит следующее: электроны смещены на одну сторону, а на другой стороне образуется местный избыток положительного заряда. Этот избыточный положительный заряд может притянуть электрон из другого атома. Эта связь является слабой, но для осуществления жизненных функций она и должна быть слабой. При сильной связи молекулы не могут быть лабильными. Таким образом, и в этом плане F2O заслуживает особого внимания. Молекула F2O является сильным диполем. Поэтому она может принимать участие в реакциях такого типа с инертными газами. При этом должны образовываться молекулярные соединения. Ничего в этом неожиданного нет. Хорошо известно, что инертные газы образуют такие соединения с водой, аммиаком и фенолами. В такого рода соединения могут входить HF и HCN, которые являются сильными диполями. Некоторые из этих соединений при низких температурах будут стабильными в той мере, в какой это необходимо для жизни.