Читаем без скачивания E=mc2. Биография самого знаменитого уравнения мира - Боданис Дэвид
Шрифт:
Интервал:
Закладка:
Первые опыты были поставлены в Берлине, в обычном обшитом досками доме, стоявшем в лесу — неподалеку от прежнего института Майтнер — под вишнями, которые так обильно цвели теплым и ясным летом 1940 года. Чтобы отпугнуть любопытных, ему дали название «Вирусный дом». Первый шаг Гейзенберга состоял в том, чтобы запастись достаточным количеством урана — намного большим, чем те несколько граммов, которые Майтнер предоставила в распоряжение Гана в 1938 году. Тогда удалось разбить небольшое число атомов. Использовавшийся Ганом образчик урана был настолько тонок, что большая часть испускаемых его атомами нейтронов, просто разлеталась по лаборатории.
Гейзенберг потребовал десятки фунтов урана. Раздобыть его было не трудно, поскольку армия Рейха овладела Чехословакией еще за год до вторжения в Польшу. А именно там, в Иоахимстале, находились крупнейшие в Европе урановые рудники, из которых когда-то получала этот металл сама Мария Кюри. Уран Гейзенбергу доставили. Престиж его был велик настолько, что «Бюро вооружений» организовало для этой цели специальный поезд.
Однако для того, чтобы пошла реакция, мало просто собрать в одном месте большое количество урана. Ибо ядро — это, как мы уже знаем, крошечная частица, сокрытая в глубине пустого пространства атома. Большинство нейтронов, возникших при распаде первых атомов, просто пролетело бы мимо других ядер, точно космические зонды пришельцев, проносящиеся сквозь нашу Солнечную систему.
Придуманный Ферми прием — использование медленных нейтронов — мог помочь разрешить эту проблему и запустить реакцию. Быстрые нейтроны можно представить себе как гладкие, «обтекаемые». Медленные же, как мы уже видели, словно бы «вихляются» и выглядят растянутыми. Даже если основная часть такого нейтрона пролетает мимо ядра, но вблизи от него, «периферия» нейтрона может его зацепить. То, что для быстрого нейтрона было бы почти попаданием в цель, для медленного обратилось бы в «захват». И когда такой медленный нейтрон захватывается ядром, или втягивается в него, возникает возможность срабатывания формулы E=mc 2: ядро начинает расшатываться, дрожать, а после взрывается, создавая сильный всплеск энергии и одновременно выбрасывая поток дополнительных нейтронов, ударяющих в другие атомы, отчего, в свой черед, взрываются и они.
Гейзенбергу требовалось вещество, способное обеспечить столь полезное замедление нейтронов. В принципе, годилось любое, в достаточной мере насыщенное водородом, поскольку, сталкиваясь с атомами водорода, нейтроны теряют скорость. Именно благодаря этому Ферми и смог в 1934 году получить, используя обычную воду (H 2О), взятую из находившегося рядом с его институтом пруда с золотыми рыбками, нужный эффект. Однако, когда первые группы немецких исследователей погружали урановый образец в обычную воду, они получали реакцию лишь в его центре, — первые атомы урана распадались, но испускаемые ими нейтроны были слишком быстрыми для того, чтобы обеспечить распространение реакции.
Гейзенбергу требовался замедлитель получше. Он знал, что примерно в то же время, когда Ферми получил свои результаты, американский химик Гарольд К. Юри установил, что вода всех океанов и озер Земли состоит не просто из H 2О. Помимо этих молекул она содержит и их разновидность — более тяжелую. В этих молекулах место обычного водорода занимает дейтерий, — он очень похож на водород, но весит почти вдвое больше. Во всех остальных отношениях вода, состоящая из таких молекул, ничем не отличается от обычной — она так же текуча и прозрачна и является частью наших дождей, морей и льда; мы пьем ее постоянно. Однако на каждые 10000 молекул обычной воды приходится только одна молекула «тяжелой» — по этой причине никто ее так долго и не замечал. (В большом плавательном бассейне наберется всего лишь стакан «тяжелой воды.) Но при этом тяжелая вода великолепнейшим образом замедляет высокоскоростные нейтроны, — ударяясь об атом дейтерия, они рикошетом отскакивают, теряя скорость при каждом таком соударении, и секунду спустя, после нескольких десятков рикошетов, вылетают из тяжелой воды, став гораздо более медленными, чем были до того, как попали в нее.
Поначалу в лабораториях Германии удалось накопить лишь несколько галлонов тяжелой воды. Для того, чтобы разделить ее между Берлином и Лейпцигом, этого было мало. К Лейпцигу Гейзенберг питал чувства более теплые, поэтому именно там, в подвале института физики, и были поставлены наиболее важные эксперименты. В 1940 году в драгоценную тяжелую воду опустили пластины урана, общий вес которых составлял несколько фунтов. Затем все это поместили в крепкий сферический сосуд и, подняв его лебедкой в воздух, расположили вокруг него измерительную аппаратуру. Как правило, профессора мелкими деталями экспериментов не занимаются, однако Гейзенберг гордился своими практическими навыками не меньше, чем даром теоретика, и потому изготовил часть измерительных приборов сам — с помощью отвечавшего за постановку опытов Роберта Допеля.
Теперь можно было приступить к эксперименту. Для того, чтобы поджечь спичку, необходим порох. Для того, чтобы взорвать динамит, требуется капсюль-детонатор. Для того, чтобы запустить атомную реакцию — даже если качество урана слишком низко, чтобы получился настоящий взрыв, — необходим начальный источник нейтронов. Допель оставил в дне сферического сосуда отверстие. Источником нейтронов было небольшое количество радиоактивного вещества, подобного тому, которое использовал Чедвик. Его доставили в лабораторию в виде одного-единственного длинного стержня и, наконец, — в феврале 1941 года — все составные части будущей бомбы оказались на месте. Можно было приступить к эксперименту.
По приказу Допеля и Гейзенберга стержень надлежало ввести в сферический сосуд, после чего в уран ударят первые свободные нейтроны. Несколько ядер урана взорвутся, осколки их начнут разлетаться со скоростью, намного превышающей ту, которая ожидалась, пока Майтнер не объяснила, как работает формула E=mc 2. Из этих быстрых осколков вылетят добавочные нейтроны. Через первые слои урана они пройдут, почти не создав никакого эффекта, однако, оказавшись в тяжелой воде, начнут рикошетить и выйдут из нее замедленными и рассеянными настолько широко, что с уже большей вероятностью будут попадать в ядра урана, особенности в наиболее хрупкие, заставляя их вибрировать и в свой черед взрываться.
При каждом таком взрыве станет срабатывать уравнение E=mc 2- в последовательности, которая, как покажут счетчики Гейгера, будет все убыстряться и убыстряться. В первые несколько миллионных долей секунды соударений случится — согласно расчетам Гейзенберга — примерно 2000. В следующие несколько миллионных секунды — уже 4000. Затем 8000, затем 16000 и так далее. При таком временном масштабе удваивание будет происходить очень быстро. Если все пойдет, как задумано, за небольшую долю секунды насчитаются уже триллионы таких крошечных взрывов, а затем и сотни триллионов, и этот каскадный эффект будет все возрастать и возрастать. Он «разорвет» обычную ткань вещества и энергия, миллиарды лет сохранявшаяся затиснутой в атомы, выйдет наружу: здесь, в подвале лейпцигского института, в этом университете, который возглавляют назначенные администрацией рейха чиновники, и аудитории которого наполняют студенты, с гордостью носящие свастику. Для того, чтобы разрушить миллиарды атомов, вовсе не нужно строить огромную лабораторию и оснащать ее миллиардами механизмов, способных испускать инициирующие такое разрушение нейтроны. После того, как взорвутся первые несколько атомов, их нагруженные нейтронами обломки быстро приведут к взрыву всех остальных. Имеющийся в распоряжении Гейзенберга уран недостаточно чист для того, чтобы создать неудержимо нарастающую реакцию, однако первый шаг к ней будет сделан.
Профессора отдали приказ, Вильгельм Пашен, ассистент Допеля, ввел в отверстие стержень. Было начало 1941 года. Инициирующие нейтроны попали внутрь урана! Все присутствовавшие уставились на шкалы приборов, собираясь записывать их показания.