Читаем без скачивания Визуальное моделирование электронных схем в PSPICE - Роберт Хайнеманн
Шрифт:
Интервал:
Закладка:
Закройте окно AC Sweep and Noise Analysis, щелкнув по кнопке OK, и активизируйте в окне Analysis Setup, в дополнение к анализу AC Sweep, параметрический анализ, установив флажок рядом с кнопкой Parametric… (рис. 8.10).
Рис. 8.10. Окно Analysis Setup с выставленными флажками AC Sweep… и Parametric…
Шаг 16 Щелкните по кнопке Parametric… и откройте окно Parametric. Проведите здесь предварительную установку для дополнительной переменной R_pass (то есть для значения сопротивления R, зарегистрированного вами как параметр), которая в ходе анализа будет изменяться в диапазоне значений от 100 Ом до 1 кОм с интервалами в 100 Ом (рис. 8.11).
Рис 8.11. Окно Parametric с установками для изменения значения сопротивления R_pass
Шаг 17 Закройте окно Parametric щелчком по кнопке OK. Затем закройте окно Analysis Setup с помощью кнопки Close и запустите процесс моделирования. По окончании выведите на экран PROBE семейство кривых напряжения на конденсаторе при изменении сопротивления R_pass (рис. 8.12).
Рис 8.12. Частотная характеристика фильтра нижних частот с сопротивлением R_pass в качестве параметра
Шаг 18 На рис. 8.13 показано, как будет выглядеть эта диаграмма при логарифмическом масштабировании оси координат Y.
Рис. 8.13. Частотная характеристика RC-фильтра нижних частот при логарифмическом масштабировании оси координат Y
8.3. Амплитуда напряжения в качестве параметра
Еще раз внимательно посмотрите на окно Parametric, изображенное на рис. 8.11. Вверху слева вы видите список возможных изменяемых переменных для дополнительного анализа. К сожалению, этот список составлен не вполне корректно. Опции Voltage Source и Current Source могут быть выбраны только при проведении анализа цепи постоянного тока DC Sweep + Parametric Sweep, они недоступны ни для анализа AC Sweep + Parametric Sweep, ни для анализа переходных процессов. Источники переменного напряжения не поддаются описанию с помощью одной единственной переменной, ведь тогда PSPICE не «знала» бы, что следует подразумевать под переменной Voltage Source: частоту, амплитуду, положение по фазе? Конечно, вы можете выбрать в качестве дополнительной переменной амплитуду источника переменного напряжения, но тогда вы должны определить ее как Global Parameter.
В качестве небольшого примера, который поможет вам разобраться во всех этих взаимосвязях, исследуем частотную характеристику RC-фильтра нижних частот для различных значений входного напряжения. Амплитуду входного напряжения определим как параметр для анализа AC Sweep + Parametric Sweep.
Шаг 19 Загрузите на экран SCHEMATICS схему RC.sch и, руководствуясь образцом на рис. 8.14, внесите в нее необходимые изменения. Таким образом вы подготовите ее к анализу AC Sweep + Parametric Sweep, для которого амплитуда источника напряжения будет определена как параметр с именем Amplit. На тот случай, если вы все же не будете проводить параметрический анализ значения Amplit, хотя и определили его как параметр, нужно установить для него атрибут AC=1V. Сохраните измененную схему в папке Projects под именем RC_AC_P2.sch (рис. 8.14).
Рис. 8.14. RC-фильтр нижних частот, для которого амплитуда источника напряжения U1 определена как параметр
Шаг 20 Проведите в окне AC Sweep and Noise Analysis предварительную установку для основного анализа AC Sweep, в ходе которого будет исследована частотная характеристика фильтра нижних частот в диапазоне от f=10 Гц до f=999 кГц с логарифмическим распределением контрольных точек по 100 точек на каждую декаду (рис. 8.15).
Рис. 8.15. Предварительная установка для основной переменной анализа AC Sweep + Parametric Sweep
Шаг 21 Откройте окно Parametric и выполните в нем необходимые настройки для изменения амплитуды (поле Amplit) как глобального параметра (опция Global Parameter) — см. рис. 8.16.
Рис. 8.16. Установки для параметрического изменения амплитуды источника напряжения U1
Убедитесь, что в окне Analysis Setup рядом с кнопками AC Sweep… и Parametric… установлены флажки (см. рис. 8.10), запустите процесс моделирования и выведите на экран PROBE диаграмму, которая должна совпасть с рис. 8.17.
Рис. 8.17. Частотная характеристика RC-фильтра нижних частот с амплитудой входного напряжения в качестве параметра
8.3.1. Упражнения по анализу частотных характеристик
Загрузите на экран SCHEMATICS схему RLC_MIX1.sch, изображенную на рис. 5.19, если вы еще не удалили ее из папки Projects, либо начертите эту схему заново (рис. 8.18).
Рис. 8.18. LC_НЧ_фильтр с крутизной фронта 12 дБ на октаву
Шаг 22 С помощью анализа AC Sweep + Parametric Sweep создайте диаграмму частотной характеристики LС_НЧ_фильтр с сопротивлением резистора R1 в качестве параметра (рис. 8.19). При этом варьируйте значение омического сопротивления динамика R1 от 4 Ом до 12 Ом с интервалами в 1 Ом.
Рис. 8.19. Частотная характеристика LC_НЧ_фильтр с крутизной фронта 12 дБ и сопротивлением в качестве параметра
Шаг 23 Убедитесь в том, что частотная характеристика данного фильтра является оптимальной при значении сопротивления 8 Ом.
Шаг 24 Теперь установите для данного динамика сопротивление R1=4 Ом и варьируйте значение индуктивности L1 от 0.2 мГн до 2 мГн с интервалами в 0.2 мГн. При каком значении индуктивности фильтр работает наиболее оптимально? Какова граничная частота (то есть частота, при которой напряжение динамика падает до 70% от своего максимального значения) для «оптимального» значения индуктивности?
Шаг 25 Найдите «оптимальные» значения для L и С при значении омического сопротивления динамика RL=6 Ом, если граничная частота должна быть на уровне значения 1 кГц.
8.4. Параметрический анализ как дополнительный к анализу переходных процессов
Анализ переходных процессов (Transient Analysis) в сочетании с параметрическим анализом (Parametric Sweep) принадлежит к числу наиболее мощных инструментов, которые имеются в программе PSPICE. Однако вы будете удивлены тем, насколько легко его применять. Знаний, приобретенных вами к этому моменту, будет вполне достаточно, чтобы без особого труда освоить и анализ Transient Analysis + Parametric Sweep.
Напоминаем, что при проведении анализа Transient Analysis + Parametric Sweep вы не можете воспользоваться опциями Voltage Source и Current Source, находящимися в списке возможных переменных в окне Parametric. Эти изменяемые переменные предназначены только для параметрического анализа цепи постоянного тока DC Sweep + Parametric Sweep. Если вы намерены изменять в ходе анализа амплитуду, фазу, время задержки распространения сигнала, длительность фронта импульса или какую-либо другую характеристику источника тока или напряжения схемы, вы должны определить эти величины как Global Parameter и затем задать их изменение.
В качестве примера того, как проводится анализ Transient Analysis в сочетании с Parametric Sweep, исследуем переходную характеристику схемы LC_НЧ_фильтр, изображенной на рис. 8.18. Это задание вы уже выполняли в уроке 5. Но теперь, с использованием новых возможностей для анализа, решить задачу будет гораздо проще.
Шаг 26 Загрузите на экран SCHEMATICS схему RLC_MIX1.sch и замените установленный в ней источник напряжения типа VSIN на генератор импульсного напряжения типа VPULSE. Установите его атрибуты, руководствуясь образцом на рис. 8.20. Сохраните измененную схему в папке Projects под именем 12dB_IMP.sch.
Рис. 8.20. LC_НЧ_фильтр с генератором импульсного напряжения типа VPULSE
Подготовьте основной анализ, то есть анализ переходных процессов, в окне Transient, как это показано на рис. 8.21.
Рис. 8.21. Предварительная установка анализа переходных процессов для исследования переходной характеристики схемы LC_НЧ_фильтр
Шаг 27 Подготовьте чертеж своей схемы к параметрическому анализу сопротивления R1 в соответствии с образцом на рис. 8.22.
Рис. 8.22. Значение нагрузочного резистора как параметр для проведения анализа Transient
Шаг 28 Руководствуясь данными на рис. 8.23, проведите в окне Parametric предварительную установку параметрического анализа дополнительной переменной (сопротивление как глобальный параметр). Задайте изменение значения RH нагрузочного резистора R, от RH=4 Ом до RH=12 Ом с интервалами в 1 Ом.