Читаем без скачивания Самая сложная задача в мире. Ферма. Великая теорема Ферма - Коллектив авторов
Шрифт:
Интервал:
Закладка:
Следующим шагом было нахождение суммы длин таких отрезков, и здесь Ферма использовал прием, именуемый сегодня "изменением переменной". Это был гениальный скачок: изменение переменной определяло обычную параболу (второй степени), квадратура которой равна значению разыскиваемой нами суммы. Другими словами, Ферма превратил проблему спрямления в проблему квадратуры, уже известную и решенную им самим. Не довольствуясь достигнутым, он определил бесконечное семейство кривых, основанных на обобщенной параболе, и доказал, что если она спрямляема, то и все остальные тоже. Он сделал это, доказав, что всегда можно построить обычную параболу, которую мы только что упомянули. Ему не только удалось спрямить кривую; он доказал, что число спрямляемых кривых бесконечно.
Но именно этот шаг сведения спрямления к квадратуре снова помешал Ферма увидеть, что результат его спрямления является еще одним уравнением. Он даже не осознал, что почти дотрагивается до основных принципов анализа. Ему удалось начать думать о бесконечно малых, что было важным шагом в открытии анализа, но это не только не привело Ферма к пересмотру своей работы о касательных и максимумах, но он также не смог истолковать свои результаты как уравнения: он думал о подкасательных и площадях.
Годами позже (и частично благодаря работам Ферма) Лейбниц и Ньютон независимо пришли к основным идеям анализа: использованию бесконечно малых и основополагающей идее того, что операция вычисления углового коэффициента касательной к кривой, заданной уравнением А, дает в результате уравнение В, а операция нахождения квадратуры кривой В дает в результате уравнение А. Другими словами, нахождение угловых коэффициентов и квадратур, дифференцирование и интегрирование являются обратными операциями, как сложение и вычитание. Это основная теорема анализа.
Как стало возможным, что Ферма не понял, насколько важное открытие находится рядом? Это ужасно досадно. Так же как и рыцарь Персеваль, Ферма увидел Святой Грааль, но не смог узнать его, что лишило его лавров первооткрывателя. В любом случае, великое открытие, которое удалось сделать Лейбницу и Ньютону, — еще один пример чудесных мостов между внешне непохожими проблемами. С подобным, как мы видели, столкнулись Ферма и Декарт при создании аналитической геометрии, а также Танияма, Симура и Уайлс при работе над гипотезой, которая носит имя первых двух.
И здесь мы почти закончили нашу историю.
ГЛАВА 6
Вероятность и принцип Ферма
Вклад Ферма в математику не исчерпывается большими областями, о которых мы говорили до этого момента, — теорией чисел, а также аналитической геометрией и анализом. Наряду с Паскалем он также стоял у истоков теории вероятностей. Свои же последние годы ученый посвятил полемике с Декартом вокруг оптики.
Говорить о "законах случая", на первый взгляд, нелепо. Как случай, который по определению непредсказуем, может иметь законы? Если сегодня, в разгаре XXI века, это понятие кажется нам удивительным, то во времена Ферма оно было невообразимым. Но такие законы существуют, и Ферма сыграл важную роль в их изучении по инициативе Блеза Паскаля.
Как обычно, все началось с одной задачи. Блез Паскаль, отец которого был одним из парижских корреспондентов Ферма, членом кружка Мерсенна, обратился к Ферма в 1654 году. Он напомнил тому о дружбе с его покойным родителем и поставил перед ним задачу. К тому времени Ферма в течение нескольких лет ни с кем не переписывался. Но в 1650-х годах он взялся за науку с новыми силами. Ясно, что этого не могло произойти, если бы он не работал скрыто все это время, хотя смерть Бограна, Декарта, Этьена Паскаля и особенно Мерсенна, а также его профессиональные обязанности, не говоря о чуме и бурном политическом климате Фронды, держали Ферма в глубокой изоляции, которую, наконец, пробило письмо Паскаля.
Паскаль познакомился с неким Антуаном Гомбо, шевалье де Мере, настоящим шулером. На основе эмпирических наблюдений тот вывел некоторые правила того, когда следует и не следует делать ставки. Шевалье поставил перед Паскалем задачу, основанную на так называемой игре очков, в которой человек ставит на то, что сможет получить определенный результат: например, число шесть при бросках игральных костей за N попыток, скажем за восемь, как это было в примере Гомбо.
БЛЕЗ ПАСКАЛЬБлез Паскаль (1623-1662), родившийся в Клермоне, во Франции, был гением. В 12 лет юноша представил своему отцу Этьену доказательство того, что сумма углов любого треугольника равна 180°. То есть он доказал одну из основных теорем •Начал· Евклида — книги, о которой мальчик не знал... Впечатленный Этьен лично занялся его образованием. В юношеском возрасте Блез создал механическую вычислительную машину с целью помочь своему отцу в утомительных расчетах, связанных со службой. Когда Этьен получил травму, Блез нанял для ухода за ним двух молодых людей, исповедовавших янсенизм — течение в католической церкви, которому противостояли иезуиты. Ученый обратился в янсенизм, отдавшись крайне суровой религиозной практике, но через некоторое время вернулся к своим исследованиям. Блез Паскаль осуществил важные исследования в области гидростатики и конических сечений, но тем не менее продолжал уделять внимание религии. Его самым известным открытием является треугольник, носящий его имя.
Суть в том, что делается ставка определенного размера, а затем бросают кости либо до тех пор, пока не будут использованы все восемь бросков, а шестерка не выпадет (что означает проигрыш), либо пока не выпадет шестерка, в случае чего бросающий кости выигрывает. Вопрос, который Гомбо задал Паскалю, был следующим: что произойдет, если прервать игру до окончания, скажем после трех бросков? Как разделить ставки между игроками? Каким образом справедливо разрешить спор? Паскаль изложил эту задачу и другие подобные ей в письме, которое не сохранилось. Однако мы знаем ответ Ферма.
Как Ферма, так и Паскалю было ясно, что нужно вычислить количество возможных случаев, с одной стороны, и количество благоприятных случаев для одного игрока, с другой (остальные случаи благоприятны для второго игрока). Затем надо разделить второе число на первое — сегодня это известно как вероятность, хотя тогда никто не пользовался таким термином. Наконец, данную вероятность требуется умножить на сумму ставки. Полученный результат сегодня называется ожидаемым значением.
Основной принцип, который сразу же приняли оба ученых, — события независимы друг от друга. Вероятность получения шестерки при пятой попытке независима от того, что произошло до этого момента. Их вывод кажется тривиальным, если знать теорию вероятностей, но вспомним, что существуют миллионы людей в мире, полагающие, что выигрышный номер рождественской лотереи будет заканчиваться на цифру 4, потому что она давно не выпадала и "уже пора".
Паскаль нашел значение для четвертой попытки: то, каким должен быть справедливый способ распределения выигрыша после трех неудачных попыток, предполагая, что оба игрока рассматривают альтернативу остановить игру или бросить кости в четвертый раз. Следует отметить, что здесь речь идет не об оригинальной задаче Гомбо; она ограничивается только одним броском после трех неудачных. Паскаль нашел, что если не осуществлять бросок, то игрок, который бросает кости, должен получить 125/1296 от исходной ставки (около 10%) — результат сложения всех вероятностей того, что он мог выиграть при первом броске, при втором и при третьем, то есть в прошлом. В соответствии с этим игрок, который бросает кости, имеет право примерно на 10% ставки.
Но Ферма заявил, что он неправ: "Если мой оппонент предложит мне 10%, чтобы я больше не бросал кости, было бы ошибкой соглашаться на них". Вероятность получения шестерки за еще один бросок та же самая, что и при любом другом броске: 1/6, около 17%. Паскаль увидел свою ошибку и согласился с решением Ферма: прошлое не важно. Единственное, что имеет значение для вычисления вероятности,— это будущее.