Читаем без скачивания Открытия, которые изменили мир - Джон Кейжу
Шрифт:
Интервал:
Закладка:
К несчастью, годы незащищенного контакта с рентгеновскими лучами в итоге погубили первых исследователей. В 1921 г., после смерти двух знаменитых рентгенологов Европы, в New York Times появилась статья, посвященная опасности прямого рентгеновского облучения, со списком всех рентгенологов и техников, погибших и пострадавших в 1915–1920 гг. Многие из них, как и Дэлли, перенесли множество операций и ампутаций в тщетных попытках остановить распространение рака. Некоторые перед лицом неизбежного вели себя героически. Пострадавший от ожогов лица и перенесший ампутацию пальцев доктор Максим Менар, глава «электротерапевтического» отделения одной из больниц Парижа, по слухам, сказал: «Если икс-лучи прикончат меня, по крайней мере я буду знать, что с их помощью я спас других людей».
В итоге переосмысление природы рентгеновских лучей и их воздействия на живой организм помогло людям более трезво оценить степень риска. Как нам известно, рентгеновские лучи — разновидность световых волн (электромагнитного излучения). Они обладают запасом энергии, достаточным для отделения электронов от атомов и тем самым изменения клеточных функций на атомарном уровне. Таким образом, проходя сквозь тело, лучи могут воздействовать на клетки одним из двух основных способов: уничтожить либо повредить их структуры. Уничтожение клеток вызывает кратковременный неблагоприятный эффект: ожоги и выпадение волос. Но если рентгеновский луч «всего лишь» повредит ДНК, не уничтожив при этом саму клетку, та будет продолжать делиться и передаст мутировавшую ДНК дочерним клеткам. Годы или десятилетия спустя эти мутации могут привести к развитию опухоли.
К счастью, к 1910 г. скрытая опасность рентгеновских лучей была широко признана, и врачи и ученые начали активнее пользоваться защитными очками и фартуками. Оставив позади этот мрачный этап, рентгеновские лучи смогли устремиться к более ясному и безопасному будущему.
Веха № 6
Прыжок в современность: горячая трубка Кулиджа
Вскоре после того, как Рентген объявил о своем открытии, ученые, последовавшие по его стопам, начали обдумывать способы технического усовершенствования рентгеновского оборудования, чтобы получать более четкие снимки, уменьшить длительность облучения и сделать так, чтобы лучи глубже проникали в тело. Сделать снимок кисти было легко: рука сравнительно плоская, тонкая, и ее легко держать неподвижно длительное время. Однако запечатлеть органы, расположенные глубоко внутри, в грудной или брюшной полостях, намного сложнее. Технические усовершенствования позволили рентгенологам первого десятилетия получить снимки внутренних органов, но главными сдерживающими факторами оставались качество изображения и длительность облучения. А они зависели в основном от технических характеристик самой рентгеновской трубки.
Основной проблемой ранних трубок, вроде трубки Крукса, оказалось то, что они не были вакуумными. В них уже содержалось какое-то количество молекул газа. В этом были свои плюсы и минусы. С одной стороны, молекулы газа были необходимы для создания лучей, учитывая, что их столкновение с катодом создавало катодные лучи, которые, в свою очередь, сталкиваясь с анодом, создавали лучи рентгеновские. С другой стороны, остаточные молекулы газа обусловливали проблему: при многократном использовании они меняли состав самой стеклянной трубки и нарушали ее способность генерировать лучи. Чем больше лучей вырабатывала трубка, тем меньше становилась их интенсивность, что приводило к более низкому качеству изображения. В результате трубки со временем становились непредсказуемыми. Однажды Вильгельм Рентген даже отметил в письме: «Я не хочу связываться ни с чем, имеющим отношение к свойствам трубки, потому что эти предметы еще более капризны и непредсказуемы, чем женщины».
Для компенсации технических недостатков первых рентгеновских трубок было предложено немало остроумных изобретений, однако переломный момент — который некоторые специалисты называют «единственным важным событием в истории рентгенологии» — наступил лишь 20 лет спустя. В 1913 г. Уильям Кулидж, работавший в исследовательской лаборатории компании General Electric, разработал первую так называемую горячую рентгеновскую трубку, которую позже назвали трубкой Кулиджа. Опираясь на свои предыдущие исследования, Кулидж догадался, что можно сделать катод из вольфрама, имеющего самую высокую температуру плавления из всех металлов. При нагревании вольфрамового катода путем пропускания через него электрического тока низкого напряжения вокруг катода образовывались свободные электроны, которые при включении тока высокого напряжения с большой скоростью устремлялись к аноду в виде катодных лучей. Чем сильнее был нагрет катод, тем больше лучей можно было получить. Таким образом, создание катодных лучей с помощью тепла, а не столкновения молекул газа позволяло работать в идеальном вакууме.
Благодаря этому и другим изменениям в дизайне трубка Кулиджа не только оказалась более стабильной (и производила последовательные и однородные лучевые волны), но и позволяла контролировать интенсивность луча и глубину его проникновения. Интенсивность лучей контролировали, меняя температуру катода, а глубину проникновения — меняя силу напряжения в трубке. Наконец, работающая в вакууме трубка Кулиджа была менее капризной и могла функционировать почти бессрочно, если только не разбивалась и не получала других серьезных повреждений.
К середине 1920-х трубка Кулиджа в целом вытеснила старую трубку, наполненную газом. Кроме того, позже Кулидж разработал усовершенствования, позволяющие задействовать более высокое напряжение и получать более высокую частоту рентгеновских лучей. Это привело к развитию так называемой глубокой терапии, в ходе которой лучами лечили глубоко расположенные ткани, не нанося при этом вреда внешним кожным покровам. Благодаря разработкам Кулиджа использование рентгеновских лучей в диагностической и терапевтической медицине широко распространилось во всем мире с 1920-х. Принцип работы горячей трубки Кулиджа по-прежнему лежит в основе современных рентгеновских аппаратов.
Веха № 7
Открыта последняя тайна: истинная природа лучей
Если бы вы были ученым или обывателем в 1896 г. и заинтересовались недавно открытыми рентгеновскими лучами, вас наверняка в равной степени заинтриговали и позабавили бы некоторые теории, касающиеся их природы. Например, физик Альберт Майкельсон сделал любопытное предположение, назвав рентгеновские лучи «электромагнитными вихрями, проходящими сквозь эфир». Томас Эдисон предложил версию, которая в итоге также была отброшена как «вздорная»: рентгеновские лучи — это «высокочастотные звуковые волны». Другие теории утверждали, что рентгеновские лучи — это катодные лучи (несмотря на то, что факты этому явно противоречили).
Интересно, что ближе всех к разгадке подошел сам Вильгельм Рентген в своей первой работе 1895 г., когда заметил, что лучи идентичны свету, хотя бы потому, что способны создавать изображение на фотопленке. Кроме того, он заметил, чем рентгеновские лучи отличаются от света: их нельзя разложить с помощью призмы или отклонить магнитом либо другими инструментами. На фоне этих и других противоречивых наблюдений вопрос об истинной природе рентгеновских лучей влился в русло более широких дебатов, развернувшихся в то время между физиками, которые пытались определить, состоит свет из частиц или из волн. Вскоре новые данные продемонстрировали, что рентгеновские лучи действительно представляют собой некую разновидность света — точнее, электромагнитного излучения, проходящего через пространство в виде волн. Поначалу Рентген и другие ученые сомневались в этом, поскольку длина волны рентгеновского луча невероятно мала: примерно в 1000 раз меньше, чем у видимого света.
Окончательное доказательство было получено 23 апреля 1912 г. Физик Макс фон Лауэ обдумывал, как доказать, что рентгеновские лучи действительно являются электромагнитными волнами и одновременно — хотя эта проблема вроде бы была совершенно не связана с первой — что кристаллы обладают упорядоченной атомной структурой (кристаллической решеткой). Блестящее озарение позволило фон Лауэ совместно с Вальтером Фридрихом и Паулем Книппингом ответить на оба вопроса в ходе одного эксперимента. Он пропустил рентгеновский луч через кристалл сульфата меди, предположив, что, если атомы действительно располагаются в виде решетки — и лучи действительно состоят из волн, — пространство между атомами окажется достаточно мало, чтобы рассеять и отклонить коротковолновые лучи. Эксперимент фон Лауэ подтвердил оба предположения. Увидев отчетливый «интерференционный» рисунок, который оставил луч, пройдя сквозь кристалл и засветив фотографическую пластину, фон Лауэ сделал выводы: во-первых, атомы в кристалле упорядочены в виде решетки; во-вторых, рентгеновские лучи распространяются в виде волн, а следовательно, являются одной из форм света. За это историческое открытие фон Лауэ в 1914 г. получил Нобелевскую премию по физике.