Категории
Самые читаемые

Читаем без скачивания Суперобъекты. Звезды размером с город - Сергей Попов

Читать онлайн Суперобъекты. Звезды размером с город - Сергей Попов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 27 28 29 30 31 32 33 34 35 ... 41
Перейти на страницу:

Вроде бы все просто, но насколько вероятно такое событие? Первые оценки сделал сам Эйнштейн. Еще в 1912–1915 годах, задолго до своей знаменитой статьи 1936 года, посвященной гравитационному линзированию, он провел все основные вычисления, которые были позже обнаружены в его черновых записях[15]. Он рассмотрел вопрос о том, нельзя ли линзированием объяснить феномен новых звезд (сейчас мы знаем, что это двойные системы, где происходит термоядерная вспышка в веществе, накопленном на поверхности белого карлика). Оказалось, что линзирование тут ни при чем. Кроме того, что кривые блеска отличаются по форме (при линзировании кривая должна быть симметричной, причем во всех цветах, а у новых кривые асимметричны), новые вспыхивают слишком часто, чтобы линзирование позволило их объяснить. Чтобы увидеть в течение года одно событие микролинзирования, нужно наблюдать за миллионами звезд! Эта задача технически была невыполнима более полувека с момента предсказания, пока наблюдали с помощью фотопластинок (или даже визуально), но потом появились ПЗС-матрицы. Большой вклад в развитие метода микролинзирования был сделан Богданом Пачинским в 80-е годы ХХ века. Именно он обратил внимание на перспективы использования ПЗС-матриц для наблюдений этого явления. Он же впервые использовал слово «микролинзирование».

Современная ПЗС-матрица характеризуется мегапикселями, т. е. миллионами элементов, которые получают изображение, а значит, если у вас есть поле, заполненное звездами, вы можете на одном снимке следить за блеском сразу миллионов звезд – очень удобно. И как только это стало технически возможно, люди стали искать эффект гравитационного микролинзирования и довольно быстро его обнаружили.

Линзирование позволяет определить массу объекта, который выполняет роль линзы. Оказалось, что в некоторых случаях масса объекта большая: скажем, 10 масс Солнца или 6–7 масс Солнца. Если бы это была обычная звезда, то при массе 8–10 солнечных она была бы очень яркой, т. е. ее было бы хорошо видно. А наблюдения показывали, что объект абсолютно темный. Единственный темный компактный объект из тех, что мы знаем, который может иметь такую массу и летать где-то поблизости в нашей Галактике, – это черная дыра.

Сейчас есть несколько очень хороших кандидатов в одиночные черные дыры (в сентябре 2015 года ученые добавили несколько новых кандидатов, обработав данные проекта OGLE), которые были открыты с помощью микролинзирования. Недостаток у них один: линзирование – разовый феномен, черная дыра прошла между нами и какой-то далекой звездой и улетела. Мы не можем ее наблюдать ни до линзирования, ни после линзирования – мы видим только сам эффект. Так что надежно подтвердить, что за событие ответственна именно черная дыра, мы, к сожалению, не можем. Поэтому, с одной стороны, мы знаем, что есть хорошие кандидаты в черные дыры в двойных системах, с другой стороны, надежных кандидатов в одиночные черные дыры или старые нейтронные звезды пока нет, и это остается задачей на будущее.

Астрометрический спутник GAIA. Его задачей будет точное измерение положений множества звезд. Измерение годичных параллаксов на основе этих измерений позволит построить трехмерную карту нашей Галактики. Кроме этого, как ожидают, спутник откроет множество экзопланет.

Сейчас есть надежда, что спутник GAIA сможет обнаружить нейтронные звезды и черные дыры за счет эффекта микролинзирования. Этот спутник предназначен для очень точного измерения положения звезд. Это позволит построить трехмерную карту их распределения вплоть до центра Галактики. При микролинзирование меняется не только блеск звезды, но и ее видимое положение. GAIA сможет заметить это, в том числе в тех случаях, когда линзой является нейтронная звезда или черная дыра. Это будет новым способом наблюдать эти интереснейшие компактные объекты, а вдобавок мы сможем измерять их массы.

X. Магнитары

Все любят какую-нибудь экзотику. О чем бы мы ни говорили, всегда интересно, а как выглядят самые экзотичные случаи. Даже те, кто любят котиков и размещают их фотографии в разных социальных сетях, особенно неравнодушны к фотографиям особенно необычных и странных. Среди нейтронных звезд, наверное, самыми редкими котиками можно назвать магнитары.

Изобретение магнитаров

Сама идея магнитара появилась, как это нередко бывает, после того, как их обнаружили. История придумывания магнитаров такова. В начале 1990-х годов независимо друг от друга появилось две работы, где фигурировали нейтронные звезды с очень сильными магнитными полями. Во-первых, они были использованы в работе Владимира Усова для объяснения космических гамма-всплесков. Это загадка, которая в течение примерно 30 лет мучила астрофизиков. Гамма-всплески были обнаружены американскими спутниками-разведчиками (в СССР их наверняка называли «спутниками-шпионами»), которые должны были следить за ядерными испытаниями, проводимыми в первую очередь Советским Союзом и Китаем. Однако спутники начали видеть гамма-вспышки, которые приходят откуда-то из космоса. И вот с конца 60-х по конец 90-х годов ХХ века люди вообще не знали, что это такое, где происходит, и, конечно, было страшно интересно. Было придумано множество разных гипотез: начиная с того, что это происходит прямо в Солнечной системе, заканчивая гипотезой о далеких всплесках на космологических расстояниях, что в итоге и оказалось правильным.

Одна из идей, касающихся возможной природы космических гамма-всплесков, была такой (ее как раз и придумал Владимир Усов). Пусть рождается нейтронная звезда, которая обладает очень большим магнитным полем – примерно 1015 Гаусс, это в миллион миллиардов раз больше, чем на Земле или Солнце. Второе предположение состоит в том, что новорожденный компактный объект очень быстро вращается, делая оборот, скажем, за одну миллисекунду (что близко к предельному периоду вращения нейтронных звезд). В результате получается исключительно мощный источник энергии. Источником энергии служит вращение нейтронной звезды, которое быстро высвечивается благодаря сильному полю и быстрому вращению. Это как бы такой суперрадиопульсар. При этом вращение быстро замедляется (ведь высвечивается в первую очередь именно энергия вращения). Поэтому мы будем видеть довольно короткую вспышку – краткую активность с быстрым спаданием блеска. Излучение такого источника довольно легко сделать направленным, а также поместить заметную долю потока в самый жесткий диапазон спектра. Получим гамма-всплеск.

Кривая блеска первого зарегистрированного гамма-всплеска. Это событие произошло 2 июля 1967 года. Разгадку природы этих событий пришлось ждать 30 лет.

Другая работа – это статья Кристофера Томсона и Роберта Дункана, также опубликованная в 1992 году. Они придумали механизм образования нейтронных звезд с очень сильными магнитными полями – в сотни раз больше, чем у обычных радиопульсаров. Потом они продолжили разрабатывать свою идею в целой серии статей. Они-то, собственно, и придумали магнитары в современном понимании как объекты, которыми можно было объяснять разные источники (а заодно ввели в обиход астрофизиков это слово). Но самое главные среди них – так называемые источники мягких повторяющихся гамма-всплесков. Гипотезу о том, что эти источники могут являться магнитарами, Дункан и Томпсон высказали уже в первой своей статье в 1992 году.

Открытие магнитаров

Источники мягких повторяющихся гамма-всплесков, как это ни странно, излучают мягкие повторяющиеся гамма-всплески. Обнаружены (точнее, выделены как отдельный класс объектов, связанных с нейтронными звездами) они были в 1979 году. На мой взгляд, это по крайней мере одно из самых красивых открытий, которое было сделано советской и российской астрофизикой. А может быть, не только самое красивое, но и самое важное. И уж совершенно точно, это самое красивое открытие, которое было сделано советской или российской астрофизикой с помощью установок, стоящих на спутниках.

5 марта 1979 года вспыхнул гамма-источник. Вспыхнул он в направлении Большого Магелланова облака – близкой к нам карликовой галактики. Как оказалось, источник действительно в ней и находится (детальный анализ потребовал некоторого времени, но в итоге советско-французская группа исследователей однозначно показала, что источник находится в остатке сверхновой в Магеллановом облаке). После основного пика излучения приборы «Конус», установленные на аппаратах Венера и созданные научной группой Евгения Мазеца из ФТИ им. Иоффе, зарегистрировали пульсирующий хвост. Было обнаружено, что источник обладает строгим периодом в несколько секунд. В принципе, это сразу указывает на нейтронную звезду – не так уж много в природе объектов, которые могут очень надежно выдерживать период несколько секунд. Действительно, сейчас мы знаем, что это одиночная нейтронная звезда, которая выдает столь мощные гамма-вспышки. А вспышка-то и в самом деле была на загляденее! Приборы просто ослепли и не смогли зарегистрировать максимум блеска – так ярко сияло. На одну десятую долю секунды магнитар стал ярче не слишком крупной галактики, и все это излучение приходилось на жесткий рентгеновский и мягкий гамма-диапазон.

1 ... 27 28 29 30 31 32 33 34 35 ... 41
Перейти на страницу:
На этой странице вы можете бесплатно скачать Суперобъекты. Звезды размером с город - Сергей Попов торрент бесплатно.
Комментарии