Категории
Самые читаемые
💎Читать книги // БЕСПЛАТНО // 📱Online » Бизнес » Бизнес » Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан

Читаем без скачивания Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан

Читать онлайн Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 31 32 33 34 35 36 ... 82
Перейти на страницу:

Разумеется, такой результат полностью расходится с мнением любителей баскетбола. Например, 91 % любителей баскетбола, опрошенных исследователями в Стэнфордском и Корнелльском университетах, согласились с утверждением, что вероятность попадания игроком по кольцу после того, как он выполнил перед этим два или три удачных броска, будет выше, чем в случае, если перед этим он два или три раза промазал. Важный вывод относительно феномена «набитой руки» заключается в наличии разницы между восприятием и эмпирической реальностью. Исследователи замечают, что «интуитивные представления людей о случайности или закономерности тех или иных событий систематически расходятся с положениями теории вероятностей». Нам подчас свойственно усматривать закономерности там, где их и в помине нет.

Как, например, в случае с раковыми кластерами.

Кластеры действительно встречаются. Вы, наверное, читали в газетах (или видели репортаж по телевизору) о том, что в некоем регионе отмечена повышенная заболеваемость редкой формой рака. Возможно, причиной тому является вода, расположенная поблизости атомная электростанция или вышка сотовой связи. Разумеется, любой из перечисленных факторов может реально обусловить развитие столь опасной болезни. (В последующих главах я постараюсь показать, как с помощью статистики можно идентифицировать подобные причинно-следственные связи.) Однако этот кластер (совокупность) случаев заболеваний также может оказаться результатом чистой случайности, даже когда количество заболевших подозрительно велико. Да, вероятность того, что пять человек в одном и том же учебном заведении, или церковном приходе, или на одном предприятии заболеют одной и той же редкой формой лейкемии, может составлять один шанс из миллиона, однако не следует забывать, что существуют миллионы учебных заведений, церковных приходов и предприятий. Не так уж маловероятно, что пять человек могут заболеть одной и той же редкой формой лейкемии в одном из этих мест. Мы просто забываем о всех школах, церковных приходах и предприятиях, где этого не случилось. Возьмем другую разновидность того же исходного примера – вероятность выигрыша в мгновенной лотерее; хотя она может составлять 1 шанс из 20 миллионов, никто из нас не удивляется тому, что кому-то удается выиграть: действительно, что же здесь удивительного, если были проданы миллионы билетов! (Несмотря на мое недоверие к лотереям в целом, меня восхищает лозунг иллинойсской мгновенной лотереи: «Кто-то должен выиграть; возможно, этим человеком окажетесь вы!». И впрямь, почему бы и нет?)

Ниже описан эксперимент, который я провожу со своими студентами, чтобы подтвердить этот базовый постулат. Чем больше аудитория, тем лучше. Я предлагаю каждому из присутствующих вынуть монетку и встать. Затем все подбрасывают монетку, и те, у кого выпадает решка, садятся. Допустим, в аудитории находится 100 студентов; примерно 50 из них займут свое место после первого подбрасывания. Потом мы выполняем это упражнение еще раз, в результате чего останутся стоять примерно 25 студентов. И так далее. Чаще всего после пяти или шести подбрасываний остается всего один человек, у которого пять или шесть раз подряд выпал орел. Я спрашиваю этого уникума: «Как вам это удалось?», или «Вам, наверное, известна какая-то особая методика тренировок, позволяющая достигать определенного результата?», или «Вы, возможно, придерживаетесь какой-то особой диеты, помогающей добиться такого исхода?» Все присутствующие, конечно, воспринимают это как шутку, поскольку наблюдали процесс подбрасывания монетки собственными глазами, к тому же неплохо знают друг друга и понимают, что у человека, которому удалось пять раз подряд поймать монетку орлом вверх, нет никаких особых талантов в этом занятии, а результат, которого он добился, не более чем случайное совпадение. Однако каждый раз, когда мы видим какое-либо аномальное событие вне конкретного контекста, в котором оно произошло, у нас поневоле возникает подозрение, что здесь, помимо чистой случайности, замешано что-то еще.

Ошибка прокурора. Допустим, в суде вы услышали показания, которые сводятся к следующему: 1) образец ДНК, найденный на месте преступления, совпадает с результатами анализа ДНК обвиняемого и 2) существует лишь один шанс из миллиона, что образец ДНК, найденный на месте преступления, совпадет с образцом ДНК, взятым у кого-либо другого (не у обвиняемого). (Ради простоты будем полагать, что вероятности, на которые опирается обвинение, соответствуют действительности.) Готовы ли вы вынести вердикт «виновен» на основе таких доказательств?

Надеюсь, вы не станете торопиться.

Ошибки обвинения случаются, когда контекст статистических доказательств игнорируется. Ниже описаны два сценария, каждый из которых может объяснить доказательства виновности обвиняемого, базирующиеся на результатах анализа ДНК.

Обвиняемый 1. Этот обвиняемый – влюбленный, отвергнутый своей жертвой, – был схвачен полицией за три квартала от места преступления; при нем было найдено орудие убийства. После ареста у него был взят образец ДНК, который совпал с образцом ДНК, взятым с волоска, найденного на месте преступления.

Обвиняемый 2. Этот обвиняемый был осужден несколько лет назад за аналогичное преступление, совершенное в другом штате. Когда суд признал его виновным, у него взяли образец ДНК, который был включен в общенациональную базу данных ДНК (в ней хранятся образцы ДНК более миллиона опасных уголовных преступников). Образец ДНК, взятый с волоска, найденного на месте преступления, сравнили с образцами, хранящимися в базе данных, и обнаружили совпадение с ДНК обвиняемого 2. Однако следствию не удалось обнаружить какую-либо связь последнего с жертвой преступления.

Как указывалось выше, в обоих случаях прокурор может с полным основанием заявить, что образец ДНК, взятый с места преступления, совпадает с образцом ДНК обвиняемого, и подчеркнуть, что существует лишь один шанс из миллиона, что он может совпасть с образцом ДНК какого-либо другого человека. Однако когда речь идет об обвиняемом 2, вероятность того, что он может оказаться тем самым случайным «другим человеком», одним из миллиона, образец ДНК которого по чистой случайности похож на ДНК подлинного убийцы, весьма высока. Поскольку шансы найти случайно совпадающий образец ДНК среди миллиона других образцов относительно высоки, если вы ищете его в базе данных, насчитывающей более миллиона образцов.

Возврат к среднему. Возможно, вы слышали о так называемом проклятии Sports Illustrated, в результате которого спортсмены или команды, фотографии которых помещались на обложке журнала Sports Illustrated, впоследствии снижали свои спортивные достижения. Одно из объяснений этого феномена заключалось в том, что размещение фотографии спортсмена на обложке издания неблагоприятно сказывается на его последующих спортивных показателях. Более правдоподобным, с точки зрения статистики, будет объяснение, что команды и спортсмены обычно появляются на обложке Sports Illustrated после того, как добьются выдающихся успехов (например станут олимпийскими чемпионами), поэтому вполне естественно, что, пройдя пик физической формы, они демонстрируют результаты, близкие к средним. Это явление называется возвратом к среднему. Теория вероятностей говорит о том, что любой «отщепенец» – наблюдение, существенно отклоняющееся от среднего значения в том или ином направлении, – зачастую сопровождается исходами, более близкими к долгосрочному среднему значению.

Тенденция возврата к среднему позволяет объяснить, почему Chicago Cubs[33] всегда платит огромные суммы за так называемых свободных агентов, которые впоследствии разочаровывают болельщиков вроде меня. Игроки могут выторговать у Chicago Cubs высокие зарплаты после одного-двух необычайно удачных для себя сезонов и, одевшись в форму Chicago Cubs, вовсе не обязательно начинают играть хуже (правда, я отнюдь не исключаю и такой вариант); скорее, Chicago Cubs платит за них огромные деньги по окончании какого-то особенно удачного для этих суперзвезд периода – года или двух, – после чего их спортивные результаты (уже в ходе выступлений за Chicago Cubs) возвращаются к неким средним показателям.

То же явление объясняет, почему когда некоторые учащиеся сдают какой-либо экзамен гораздо лучше, чем обычно, в ходе его повторной сдачи они демонстрируют худшие результаты, а у учащихся, которые сдают экзамен хуже обычного, при его повторной сдаче результаты оказываются лучше. Такая взаимосвязь наталкивает на мысль, что достижения – как интеллектуальные, так и физические – представляют собой сочетание труда (связанного со способностями данного человека) и некоторого элемента везения (или невезения). В любом случае можно допустить, что тем, кто длительное время демонстрировал высокие результаты, сопутствовала удача; а тем, у кого показатели были гораздо ниже среднего, наверное, в какой-то мере не везло. (Что касается экзаменов, то ученики иногда пытаются угадать правильный ответ – а здесь уже все полностью зависит от везения; когда речь идет о футболе, мяч, посланный нападающим в сторону ворот противника, может оказаться в воротах только потому, что по пути заденет ногу кого-либо из игроков команды противника.) Когда период сильного везения или невезения заканчивается – а рано или поздно это неизбежно происходит, – достигнутые результаты становятся ближе к среднему.

1 ... 28 29 30 31 32 33 34 35 36 ... 82
Перейти на страницу:
На этой странице вы можете бесплатно скачать Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан торрент бесплатно.
Комментарии