Категории
Самые читаемые

Читаем без скачивания Приключения радиолуча - Валерий Родиков

Читать онлайн Приключения радиолуча - Валерий Родиков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 30 31 32 33 34 35 36 37 38 ... 70
Перейти на страницу:

И вот виден финиш марафона — известны те пределы, до которых может быть уменьшен транзистор.

Хотя, чтобы дойти до финиша, надо преодолеть еще много преград. Но специалисты сходятся во мнении, что работать с линией тоньше, чем 0,1 микрометра, видимо, нет смысла. При таких размерах знакомые материалы ведут себя странно. Например, тончайшие полоски алюминия, которые соединяют транзисторы, извиваются как змеи, когда по ним проходят электроны. В этом тонком мире действуют уже и другие законы, и вполне вероятно, что там нас ждут неожиданные открытия.

Кроме того, не только физика накладывает ограничения, но и экономика. Возможно, что еще раньше, чем будет достигнут физический предел малости транзистора, наступит экономический предел. В последние два десятка лет стоимость чипов неуклонно снижается. При переходе на субмикронные размеры элементов микросхемы изменятся и методы изготовления чипов и тенденция снижения их стоимости может обратиться вспять. Сверхмалые и сверхсложные чипы просто невыгодно будет производить. Как говорят: «Овчинка выделки не стоит», И наука ищет выход из ожидаемого, но еще не достигнутого тупика…

А что если отказаться от привычных электрических схем? Что если для обработки информации использовать непосредственно какие-либо явления в разных средствах — твердых, жидких, плазменных, полупроводниковых, магнитных, биологических… Функцию сложной схемы их транзисторов, диодов, резисторов и других элементов пусть выполняет непосредственно какой-либо физический процесс.

Такой принципиально новый подход получил название функциональной электроники. Понятие емкое, обширное. В нем множество направлений, каждое из которых заслуживает отдельной популярной книги. Здесь и оптоэлектроника, и магнитоэлектроника, и акустоэлектроника, и криогенная электроника, и биоэлектроника…

Особенно часто сейчас в газетах пишут о биоэлектронике. Вероятно, из-за экзотики. Еще бы, биологические системы — своего рода рекордсмены. Диву даешься и отказываешься верить, когда читаешь, что слуховой орган кузнечика чувствует колебания, амплитуда которых составляет половину диаметра атома водорода! Чувствительность слуха кузнечика столь высока, что, находясь, скажем в Подмосковье, он может воспринимать самые малые землетрясения, происходящие на Камчатке. Неудивительно, что творения живой природы, своего рода биологические «патенты», — постоянный источник новых идей для инженеров, конструкторов, ученых.

Отчасти особое внимание к биоэлектронике связано с такими заманчивыми идеями, как, например, имплантация в мозг биоэлектронного устройства для восстановления зрения у слепых или создания самостоятельно собирающихся биологических вычислительных машин. Представьте себе ЭВМ, синтезированную с помощью бактерий! Вполне возможно, что лет через 15— 20 такая ЭВМ перейдет из мира фантастики в мир реальный. Уже многие научные коллективы в различных странах работают в этом направлении.

Одним из кирпичиков биологических ЭВМ может стать молекула белка с «памятью», то есть обладающая способностью находиться в одном из двух состояний, как и транзистор.

С переходом от кремниевых микросхем к «молекулярной электронике» на органических материалах, по-видимому, можно будет добиться плотности записи информации до одного миллиарда миллиардов (1018) бит в одном кубическом сантиметре материала! Для сравнения отметим, что в человеческом мозге (его объем составляет 750 кубических сантиметров) можно записать информацию, эквивалентную одной тысяче миллиардов (1012) бит (текст примерно нескольких сотен книг), а в одном кубическом сантиметре генетического материала «спрессовано» две тысячи миллиард миллиардов (2∙1021) бит информации.

Некоторые результаты уже получены. Например, в области активных биологических пленок. Их можно использовать в качестве оптических запоминающих устройств ЭВМ.

В институте биофизики АН СССР было обнаружено, что обезвоженный белок бактериородопсин может «останавливаться» на определенной стадии своего фотохимического цикла, или, попросту говоря, фиксировать записанное на нем изображение.

Бактериородопсин относится к так называемым фитопигментам, которые вступают во взаимодействие со светом. Особое место среди них занимает родопсин — светочувствительное вещество, входящее в состав клеток сетчатки глаза человека и животных. Поглощая квант света, родопсин меняет свою окраску. Он содержится, например, в солелюбивых пурпурных бактериях. Их также называют «зрячими» за способность преобразовывать энергию света в электрохимическую энергию.

Удивительное превращение происходит с помощью родопсина, и в этом варианте он называется бактериородопсином. Светочувствительные молекулы именуют также хромофорами.

Первая пленка на основе бактериородопсина создана в 1978 году. С помощью лазера на нее записывают и с нее считывают информацию. Теоретически можно получить большую плотность записи: 1014 бит на один кубический сантиметр, ведь цвет меняет единичная молекула, а значит, каждая молекула может хранить информацию.

Создать молекулярный электронный переключатель — проблема сложная и пока еще не воплощенная в практическое устройство. Нужно, чтобы молекула могла изменять свое строение (например, конфигурацию электронных оболочек) и возвращаться в исходное состояние вполне определенным и контролируемым образом.

Возбуждать биомолекулу, или, иначе, переводить ее в одно из устойчивых состояний надо осторожно. В момент перестройки электронных оболочек она поглощает энергию, что приводит к ее тепловому разрушению. И ученые вспомнили об одном интересном явлении — о солитонах. Им-то и решили поручить эту работу.

Солитоны — устойчивые уединенные волны — порой возникают в самых разных средах: в кристаллах, магнитных материалах, в сверхпроводниках, в живых организмах, в атмосфере Земли и других планет, в галактиках…

Уединенная волна ведет себя как частица, хотя ею и не является, а представляет собой особое возбужденное состояние среды. Два солитона могут столкнуться и разлететься подобно бильярдным шарам, поэтому в некоторых случаях солитон рассматривают как частицу, движение которой подчиняется закону Ньютона. Иногда солитоны называют также «частицеподобными волнами».

Мы уже говорили о монополе — частице, несущей магнитный заряд. Его носителем мог бы быть и солитон. Во всяком случае, теория не отвергает такой возможности. Интересный результат получил советский физик В. А. Рубаков: вблизи монополя вечный пока протон распадался бы мгновенно. Наше счастье, что монополи не обнаружены. Значит, их или очень мало, или вовсе нет.

Исследователи заметили, что в определенных условиях тонкие пленки органических веществ из белков и ферментов могут быть той средой, в которой распространяются солитоны за счет энергии, в ней запасенной. Замечательно, что при движении солитонов не происходит потери энергии. Это очень ценное свойство с точки зрения создателей нового поколения микросхем.

Была предложена такая модель молекулярного переключателя на органической основе. Белковая цепочка присоединена к светочувствительной молекуле — хромофору. Молекула хромофора переходит из активного состояния в пассивное и обратно при движении солитонов вдоль цепочки белка. Если она находится в возбужденном состоянии, то под влиянием падающего света в ней возникает электрическое напряжение. Если в спокойном, то при воздействии света напряжения не возникает. Используя такой переключатель как элементарную ячейку, можно составить более сложные переключающие схемы вплоть до устройств сложения и деления, применяемых в ЭВМ.

Ученых привлекают две заманчивые идеи конструирования органических материалов для будущих биосхем. Первая состоит в том, чтобы создать тонкую органическую пленку с помощью последовательного нанесения мономолекулярных слоев с поверхности жидкости на подложку. После высыхания слои можно скрепить электронным пучком. Вторая идея — более отдаленного будущего: использовать успехи генной инженерии, с тем чтобы «подправить» нужным образом белковые структуры, особенно те, которые обладают необычными свойствами.

Ряд ученых прочат в качестве «памяти» будущих биологических ЭВМ молекулы ДНК (дезоксирибонуклеиновой кислоты), в которых природа зашифровала код нашей жизни. Один из руководителей американской компании «Белл телефон» выразился так: «Первоначально наше внимание было обращено на то, каким образом природа создала исключительно эффективную сигнальную систему. Если рассмотреть все имеющиеся виды хранения и передачи информации, нетрудно увидеть, что один из наиболее удачных способов, существующих в природе, осуществляется при помощи молекул ДНК. Мы еще не вполне готовы подключить телефонные провода к ним. Пока мы просто хотим посмотреть, чему у таких молекул можно научиться».

1 ... 30 31 32 33 34 35 36 37 38 ... 70
Перейти на страницу:
На этой странице вы можете бесплатно скачать Приключения радиолуча - Валерий Родиков торрент бесплатно.
Комментарии