Читаем без скачивания Синергетика и прогнозы будущего - С. Капица
Шрифт:
Интервал:
Закладка:
Рис. 9. Устойчивость данной траектории x(t) зависит от поведения бесконечно близких траекторий.
И действительно, А.Ю.Андреевым и М.И.Левандовским была предложена модель, обладающая странным аттрактором [5]. Для описания забастовочного движения эта модель представляет собой модификацию известной в химической кинетике системы Ресслера, которая использовалась также при описании эпидемий. Построенная динамическая система имеет вид
= m (N-X) - bXZ
= bXZ - (m+a)Y
= aY - (m+g) Z
= gZ - mW
Здесь N – общее число рабочих, занятых на предприятиях губернии, X – число рабочих, еще не воспринявших информацию о забастовке, Y – рабочие, согласившиеся забастовать, но не ведущие активную агитацию, Z – рабочие, становящиеся агитаторами, W – рабочие, отказавшиеся от участия в стачечной борьбе после одной из забастовок. Оказалось, что эта модель вполне удовлетворительно количественно описывает число рабочих, бастовавших во Владимирской губернии в 1895 – 1905 гг. Любопытно, что одна из базовых моделей нелинейной динамики – система Ресслера, оказалась весьма удобным и универсальным "строительным блоком" для построения математических моделей в нескольких областях.
Другой подход связан с представлением о точках бифуркации исторического процесса. В этой модели считается, что долговременные исторические изменения описываются динамической системой, зависящей от параметра l
= -U(x,l)/x,
Например, таким параметром может быть "историческое время". При изменении параметра в системе (8) может происходить бифуркация. Малые случайные воздействия при этом могут оказаться решающими при выборе ветви бифуркационной диаграммы. В исторической интерпретации это соответствует возрастанию роли отдельных личностей, появлению возможности влиять на ход исторических процессов с помощью малых воздействий. В терминологии нелинейной динамики, выбор ветви связывается с принципом "возникновения порядка через флуктуации" [16, 18]. В принципе, может быть разработана техника, позволяющая диагностировать точки бифуркации. Приведем пример, иллюстрируюший такой подход. В физике известен феномен критических флуктуаций, когда в точке фазового перехода возникают гигантские случайные отклонения, охватывающие всю систему. Аналогичные явления могут иметь место в точках бифуркации исторического процесса. Наглядный пример этого – огромный рост тиража и влияния на общественную жизнь в годы так называемой "перестройки" журнала "Огонек". После перехода к новому общественному укладу этот журнал утратил влияние и стал заурядным изданием. Другие примеры дает анализ процессов выбора путей развития в ходе НЭПа [5].
Во всех этих моделях предполагается, что мы имеем систему с известным фазовым пространством сравнительно небольшой размерности. Тогда оправдано и применение методики реконструкции аттракторов, и построение моделей вида (7) и (8). В этой ситуации различные общества должны оказываться в близких точках фазового пространства. Должны быть "исторические аналоги". Техника поиска таких аналогов имела бы большое значение. Например, сегодня мы не можем сказать, насколько похожа "маленькая победоносная война" с Японией в начале века на "чеченскую войну". Однако этот вопрос поставлен вполне корректно и на нынешнем уровне, вероятно, может быть решен средствами исторического анализа и имитационного моделирования.
Вместе с тем можно ожидать, что ряд исторических процессов требует для своего динамического описания фазового пространства достаточно большой размерности. Типичный пример – острое развитие внутриполитической ситуации, приводящее к военным действиям на внешнеполитической арене, к экспорту своих проблем вовне. Предсказуемы ли такие события? Действовать в соответствии с обрисованным выше подходом нельзя. Алгоритмы реконструкции аттракторов в пространстве большой размерности неэффективны. Феноменологическое описание требует знания многих трудно измеряемых параметров. Кроме того, в мировой истории описано множество событий, где волевые решения и случайности сыграли ключевую роль. Грубо говоря, получить динамический прогноз не удается, а статистический прогноз не нужен. В связи с этим разумно ввести новый класс математических моделей, которые можно условно назвать динамическими системами с джокерами.
Рис. 10. Фазовое пространство с джокером в области G2.
Мы хотим описать ситуацию, в которой процессы в части фазового пространства (обозначим эту часть G1), вполне предсказуемы и описываются динамической системой (см. рис.10)
=(),
или
n+1 = (n)
В другой части фазового пространства (G2) задано некоторое правило, определяющее где окажется точка в фазовом пространстве после того, как она попала из G1 в G2. Это правило мы и назовем джокером. Часть G2 может соответствовать "третьему измерению" в мире "плоскатиков", высшим размерностям при реконструкции аттракторов, "свободе воли" или непредсказуемым действиям политического руководства. Естественно предположить, что часть множества G2 гораздо меньше, чем G1.
Можно выделить три основных типа джокеров.
Джокер первого типа переносит точку, попавшую в G2, в некоторую фиксированную точку из множества G1 (детерминированный джокер). В частности, он описывает ситуацию, когда "рубят сук, на котором сидят". В конце концов мы всегда оказываемся на земле.
Джокер второго типа переносит точку, попавшую в G2, с вероятностью pi в точкуi множестваG1. Например, мы бросаем монетку и решаем, устроить презентацию нашего банка в "Хилтоне" или объявить о банкротстве (вероятностный джокер).
Джокер третьего типа задается распределением вероятности p(), в соответствии с которым он переносит попавшую в G2 точку в разные точки из G1 (мы попали в крупные неприятности, и, чтобы выбраться из них, нужно выложить большую сумму; возможный размер суммы задается распределением вероятности p()).
Рис. 11. Пример отображения с джокером около начала координат, которое может описывать военные расходы небольшого княжества.
Построим простейшую модель, описывающую военную политику некого княжества в период междоусобных войн. Пусть параметром порядка являются военные расходы – переменная xn, где n – номер месяца, в котором они были сделаны. При пассивной военной политике военных походов не предпринимается, военные расходы уменьшаются (см. рис.11)
xn+1 = l xn(1-xn), l<1, x1= x' (10)
Предположим также, что мы имеем дело с сильным княжеством, которое не ждет больших неприятностей от соседей. С падением расходов возникают проблемы с содержанием военной дружины, падает авторитет князя, начинается борьба за власть. Поэтому, когда xn< e, надо предпринимать активные действия. Допустим, что с вероятностью p1 принимается решение о военном походе на северных, а с вероятностью p2 – планируется "организовать систему коллективной безопасности" с южными соседями. Такую ситуацию описывает отображение (10), заданное на интервале e ё xn ё 1 (G1) и джокер второго рода, заданный в области 0 ё xn < e (G2) . С вероятностью p1 джокер переносит значение xn в точку a1 (поход на северных), с вероятностью p2 – в точку a2 (экспедиция к южным). Северные расположены дальше, поэтому и затраты будут больше. В отсутствие джокера xn® 0 при n ®Ґ и военный компонент политики перестает быть значимым. При наличии джокера в системе периодически возникают военные походы, ход каждого из которых (точнее, его финансирование) вполне предсказуем. Однако сказать, куда же мы направимся в следующий раз, вразумлять южных или укрощать северных, нельзя. В реальной ситуации это, разумеется, зависит от темперамента князя, мудрости бояр, взглядов его супруги и советника по национальной безопасности, а также от множества других факторов, которые нам неизвестны. Именно эту неопределенность и отражает джокер. Отметим, что множество других факторов, характеризующих княжество, будет зависить от уровня военных расходов, который может оказаться параметром порядка.
Обратим внимание на то, что джокер может радикально изменить ход процесса – сделать установившийся процесс периодическим или хаотическим, или, напротив, внести упорядоченность в поведение системы. Он может приводить к эффектам, которые качественно отличаются от явлений, наблюдаемых в динамических системах с малым шумом. Анализ систем с джокерами ставит множество интересных математических задач [24]. С другой стороны, поиск джокеров, характеризующих историческую реальность, также может оказаться глубокой содержательной проблемой.