Читаем без скачивания Никола Тесла — повелитель молний. Научное расследование удивительных фактов. - Олег Фейгин
Шрифт:
Интервал:
Закладка:
Если работы по теории броуновского движения продолжили и логически завершили предшествовавшие труды в области молекулярной физики, то работы по теории света, тоже базировавшиеся на сделанном ранее открытии, носили поистине революционный характер. В своем учении Эйнштейн опирался на гипотезу, выдвинутую в 1900 году М. Планком, о квантовании энергии материального осциллятора. Но Эйнштейн пошел дальше и постулировал квантование самого светового излучения, рассматривая последнее как поток квантов света, или фотонов (фотонная теория света). Это позволяло простым способом объяснить фотоэлектрический эффект — выбивание электронов из металла световыми лучами, явление, обнаруженное в 1886 году Г. Герцем и не укладывавшееся в рамки волновой теории света. Девять лет спустя предложенная Эйнштейном интерпретация была подтверждена исследованиями американского физика Милли-кена, а в 1923 году реальность фотонов стала очевидной с открытием эффекта Комптона (рассеяние рентгеновских лучей на электронах, слабо связанных с атомами). В научном отношении гипотеза световых квантов составила целую эпоху. Без нее не могли бы появиться знаменитая модель атома Н. Бора (1913) и гениальная гипотеза «волн материи» Луи де Бройля (начало 1920-х годов).
В том же 1905 году была опубликована работа Эйнштейна «К электродинамике движущихся тел». В ней излагалась специальная теория относительности, которая обобщала ньютоновские законы движения и переходила в них при малых скоростях движения (о « с). В основе теории лежали два постулата: специальный принцип относительности, являющийся обобщением механического принципа относительности Галилея на любые физические явления (в любых инерциальных, то есть движущихся без ускорения системах все физические процессы — механические, электрические, тепловые и т. д. — протекают одинаково), и принцип постоянства скорости света в вакууме. Это привело к ломке многих основополагающих понятий (абсолютность пространства и времени), установлению новых пространственно-временных представлений (относительность длины, времени, одновременности событий). Минковский, создавший математическую основу теории относительности, высказал мысль, что пространство и время должны рассматриваться как единое целое (обобщение евклидова пространства, в котором роль четвертого измерения играет время). Разным эквивалентным системам отсчета соответствуют разные «срезы» пространства-времени.
Исходя из специальной теории относительности Эйнштейн в том же 1905 году открыл форму взаимосвязи массы и энергии. Из нее следует, что любой перенос энергии связан с переносом массы. Эта формула трактуется так же, как выражение, описывающее «превращение» массы в энергию. Именно на этом представлении основано объяснение так называемого «дефекта массы». В конце 1909 года Эйнштейн получил место экстраординарного профессора теоретической физики Цюрихского университета. Здесь он преподавал только три семестра, затем последовало почетное приглашение на кафедру теоретической физики Немецкого университета в Праге.
Исходя из своего принципа относительности он в 1911 году в статье «О влиянии силы тяжести на распространение света» заложил основы релятивистской теории тяготения, высказав мысль, что световые лучи, испускаемые звездами и проходящие вблизи Солнца, должны изгибаться у его поверхности. Таким образом, предполагалось, что свет обладает инерцией и в поле тяготения Солнца должен испытывать сильное гравитационное воздействие. Летом 1912 года Эйнштейн вернулся в Цюрих, где в Высшей технической школе была создана кафедра математической физики. Здесь он занялся разработкой математического аппарата, необходимого для дальнейшего развития теории относительности. В этом ему помогал его ученик Марсель Гросман. Плодом их совместных усилий стал труд «Проект обобщенной теории относительности и теории тяготения». В Берлин Эйнштейн прибыл в апреле 1914 года, будучи уже членом Академии наук (1913), и приступил к работе в созданном Гумбольдтом университете — крупнейшем высшем учебном заведении Германии. Здесь он провел 19 лет — читал лекции, вел семинары, регулярно участвовал в работе коллоквиума, который во время учебного года раз в неделю проводился в Физическом институте.
В 1915 году Эйнштейн завершил создание общей теории относительности. Всего через год после опубликования работы по общей теории относительности Эйнштейн представил еще одну работу, имеющую революционное значение. Поскольку не существует пространства и времени без материи, то есть без вещества и поля, отсюда с необходимостью следует, что Вселенная должна быть пространственно конечной. В 1916-1917 годах вышли работы Эйнштейна, посвященные квантовой теории излучения. В них он рассмотрел вероятности переходов между стационарными состояниями атома (теория Н. Бора) и выдвинул идею индуцированного излучения. Эта концепция стала теоретической основой современной лазерной техники.
Середина 1920-х годов ознаменовалась в физике созданием квантовой механики. Несмотря на то что идеи Эйнштейна во многом способствовали ее становлению, вскоре обнаружились значительные расхождения между ним и ведущими представителями квантовой механики. Эйнштейн не мог примириться с тем, что закономерности микромира носят лишь вероятностный характер. Между тем политическая ситуация в Германии становилась все более напряженной. Вскоре началась планомерная кампания против создателя теории относительности. В начале 1933 года Эйнштейн находился в Пасадене, и после прихода Гитлера к власти он никогда более не ступал на немецкую землю. В марте 1933 года заявил о своем выходе из Прусской академии наук и отказался от прусского гражданства.
С октября 1933 года Эйнштейн приступил к работе в Принстонском университете, а вскоре получил американское гражданство, одновременно оставаясь гражданином Швейцарии. Ученый продолжал свои работы по теории относительности; большое внимание уделял попыткам создания единой теории поля.
Находясь в США, ученый старался любыми доступными ему средствами оказывать моральную и материальную поддержку немецким антифашистам. Его очень беспокоило развитие политической ситуации в Германии. Эйнштейн опасался, что после открытия деления ядра Ганом и Штрассманом у Гитлера появится атомное оружие. Тревожась за судьбу мира, Эйнштейн направил президенту США Ф. Рузвельту свое знаменитое письмо, которое побудило последнего приступить к работам по созданию атомного оружия.
После окончания второй мировой войны Эйнштейн включился в борьбу за всеобщее разоружение. На торжественном заседании сессии ООН в Нью-Йорке в 1947 году он заявил об ответственности ученых за судьбы мира, а в 1948 году выступил с обращением, в котором призывал к запрещению оружия массового поражения. Мирное сосуществование, запрещение ядерного оружия, борьба против пропаганды войны — эти вопросы занимали Эйнштейна в последние годы его жизни не меньше, чем физика.
Умер Эйнштейн в Принстоне (США) 18 апреля 1955 года. Его прах был развеян друзьями в месте, которое должно навсегда остаться неизвестным.
Нейман, Джон фон (Neumann John von) (1903-1957), американский математик. Родился 3 декабря 1903 года в Будапеште. В 1926 году окончил Будапештский университет, получил степень доктора философии. Продолжил математические исследования в Геттингене, Берлине и Гамбурге. В 1931-1933 годах работал в Принстонском университете — сначала в качестве лектора, а затем профессора математической физики. В 1933 году перешел в Институт перспективных исследований в Принстоне; оставался профессором этого института до конца жизни. Во время второй мировой войны Нейман принимал участие в различных оборонных проектах, в том числе в создании атомной бомбы.
Джон фон Нейман внес значительный вклад в развитие многих областей математики. Первые его работы, написанные под влиянием Д. Гильберта, посвящены основаниям математики. Когда К. Гедель показал неосуществимость предложенной Гильбертом программы, Нейман оставил исследования в этой области и занялся функциональным анализом и его применением к квантовой механике. Нейману принадлежит строгая математическая формулировка принципов квантовой механики, в частности ее вероятностная интерпретация; его труд «Математические основы квантовой механики» (Mathematical Foundations of Quantum Mechanics, 1932) считается классическим. В 1932 году Нейман доказал эквивалентность волновой и матричной механики. Исследование оснований квантовой механики побудило его к более глубокому изучению теории операторов и созданию теории неограниченных операторов.
Труды Неймана оказали влияние на экономическую науку. Ученый стал одним из создателей теории игр — области математики, которая занимается изучением ситуаций, связанных с принятием оптимальных решений. Приложение теории игр к решению экономических задач оказалось не менее значимым, чем сама теория. Результаты этих исследований были опубликованы в работе «Теория игр и экономическое поведение» (The Theory of Games and Economic Behavior), написанной совместно с экономистом О. Мор-генштерном в 1944 году. Третья область науки, на которую оказало влияние творчество Неймана, — теория вычислительных машин и аксиоматическая теория автоматов. Настоящим памятником его достижениям являются сами компьютеры, принципы действия которых были разработаны именно Нейманом (отчасти в совместно с Г. Голдстайном).