Читаем без скачивания 1. Современная наука о природе, законы механики - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
§ 1. Симметрия в физике
§ 2. Переносы начала
§ 3. Вращения
§ 4. Векторы
§ 5. Векторная алгебра
§ 6. Законы Ньютона в векторной записи
§ 7. Скалярное произведение векторов
§ 1. Симметрия в физике
В этой главе мы вводим понятие, которое среди физиков известно под названием симметрия законов физики. Слово «симметрия» употребляется здесь в несколько необычном смысле, и поэтому нужно его определить. Как же определить симметрию какого-либо предмета? Когда мы говорим, что изображение симметрично, то этим мы хотим сказать, что одна его часть такая же, как другая. Профессор Герман Вейль дал такое определение симметрии: предмет симметричен, если его можно подвергнуть какой-либо операции, после которой он будет выглядеть как и вначале. Например, если мы повернем вазу на 180° вокруг вертикальной оси и она не изменит своего внешнего вида, то мы говорим, что обе стороны вазы симметричны. Мы будем понимать определение Вейля в более широком смысле и говорить о симметрии законов физики.
Предположим, что где-то мы установили сложную машину со множеством зацеплений, с какими-то маховиками, шатунами и т. п. Предположим теперь, что в каком-то другом месте мы собрали такое же устройство, все части которого являются точной копией частей прежней машины, причем сохранены все размеры и ориентация отдельных ее частей, все то же самое, только перенесено на некоторое расстояние. Затем мы запустим обе машины в одинаковых условиях и посмотрим, будут ли они работать совершенно одинаково? Будут ли движения отдельных частей одной машины повторять в точности соответствующие движения другой? Вообще говоря, ответ может быть отрицательным, потому что мы можем ведь выбрать для второй машины неудачное место, скажем поставить ее так, что какие-то ее части будут при работе ударяться о стенку, тогда машина вовсе не будет работать.
Любая физическая идея требует здравого смысла при своем осуществлении, ведь это не чисто математические или абстрактные идеи. Нужно понимать, что мы имеем в виду, когда говорим, что при перенесении какого-либо устройства в другое место наблюдаются те же явления. Под этим мы понимаем, что мы передвигаем все, что можно передвинуть. Если же при этом явление в чем-то изменяется, то мы предположим, что что-то послужило помехой, и займемся изучением причин. Если мы ничего не обнаружим, то объявим, что физические законы не обладают ожидаемой симметрией. Но если физические законы все-таки обладают симметрией, то мы найдем причину помех, во всяком случае мы надеемся найти ее. Осмотревшись, мы обнаружим, например, что работе машины мешает стена. Основной вопрос состоит в следующем: если мы достаточно хорошо изучим наши устройства, если все основные источники сил имеются внутри аппарата и если на другое место передвинуть все, что следовало передвинуть, то будут ли законы меняться? Будет ли машина на новом месте работать так, как раньше?
Ясно, что мы хотим передвинуть само устройство и источники основных влияний, а вовсе не все на свете — планеты, звезды и т. п., ибо если бы мы и совершили эту грандиозную работу, то наблюдали бы прежнее явление по той простой причине, что мы оказались бы на том же самом месте. Но мы и не можем передвинуть все на свете. Оказывается, что если передвигать наше устройство более или менее разумно, то оно будет работать одинаково. Другими словами, если мы не будем вламываться в стенку, будем знать происхождение внешних сил и постараемся, чтобы они были передвинуты вместе с машиной, то она будет работать на новом месте так же хорошо, как и прежде.
§ 2. Переносы начала
Мы ограничим наше рассмотрение законами механики, которую достаточно хорошо изучили. В предыдущих главах мы установили, что законы механики можно свести к трем справедливым для любой частицы уравнениям:
Это означает, что существует такой способ измерения расстояний х, у и z вдоль трех взаимно перпендикулярных осей и сил вдоль этих направлений, при котором определяемые уравнениями (11.1) законы верны. Расстояния должны отсчитываться от некоторого начала, но где следует расположить это начало? Ньютон сказал нам только, что такая точка, от которой можно начать отсчет, существует; может быть, это центр Вселенной, и при измерении расстояний от нее его законы верны. Но мы можем немедленно показать, что незачем искать центр Вселенной, ибо безразлично, какую точку взять за начало координат. Иными словами, предположим, что имеются два человека — Джо, который выбрал начало своей системы координат в какой-то точке, и Мик, который построил систему координат, параллельную первой, но принял за начало другую точку (фиг. 11.1), расположенную на расстоянии а по оси х в его системе.
Фиг. 11.1.Две параллельные координатные системы.
Когда Джо определяет положение произвольной точки в пространстве, он находит три ее координаты: х, у и z (обычно мы опускаем ось z, ибо ее трудно изобразить на нашем чертеже). В системе Мика эта точка будет иметь другое значение х (чтобы отличить его, введем обозначение х') и, вообще говоря, другое значение у, хотя в нашем примере они численно равны. Таким образом, мы имеем
х'=х- а, у'=y, z'=z. (11.2)
Чтобы сделать наш анализ полным, нужно знать, какие силы измеряет Мик. Если сила действует вдоль произвольной линии, то под силой вдоль направления х мы понимаем некоторую часть общей силы, которая равна произведению величины силы на косинус угла между направлением силы и осью х. Легко видеть, что Мик получит те же проекции силы, какие получил Джо, т. е. мы имеем систему уравнений
Fx''=Fx, Fy''=Fy, Fz'=Fz. (11.3)
Уравнения (11.2) и (11.3) определяют соотношения между величинами, используемыми Джо и Миком.
Теперь поставим вопрос так: если Джо знает законы Ньютона, то будут ли они верны, когда их попробует использовать Мик? Имеет ли значение выбор начала координат? Другими словами, предположим, что уравнения (11.1) верны, а (11.2) и (11.3) определяют соотношения между измеряемыми величинами; верно ли, что
Чтобы проверить эти уравнения, дважды продифференцируем выражение для х по времени. Прежде всего
Предположим теперь, что начало системы координат, которой пользуется Мик, фиксировано (не движется) относительно системы координат Джо, т. е. а постоянна и da/dt=0; таким образом, получаем
dx'/dt=dx/dt и, следовательно,
d2x'/dt2=d2x/dt2 Если предположить, что измеряемые Джо и Миком массы равны, то уравнение (11.4а) принимает вид
Таким образом, произведения массы на ускорение одинаковы у обоих друзей. Можно получить и формулу для FX' . Использовав (11.1), мы обнаружим
. Fx'=Fx.
Следовательно, законы механики, с точки зрения Мика, точно такие же: он пишет законы Ньютона в других координатах, и эти законы оказываются верными. Это означает, что центра Вселенной нет и законы движения выглядят одинаково, с какого бы места они ни наблюдались.
Верно и такое утверждение: если в каком-либо месте установить устройство с каким-то механизмом, то и в любом другом месте это устройство будет работать одинаково. Почему? Потому что любая машина, которую изучает Мик, подчиняется тем же уравнениям, которые описывают работу машины, контролируемой Джо. Поскольку уравнения, одинаковы, то и явления одни ' и те же. Таким образом, доказательство того, что аппарат в новом месте будет работать так же, как на прежнем, сводится к доказательству, что отнесенные к новой точке пространства уравнения воспроизводят себя. Поэтому мы говорим, что законы физики симметричны относительно перемещений в пространстве, симметричны в том смысле, что законы не изменяются при перемещениях начала системы координат. Конечно, каждый интуитивно знает, что это верно, но интересно и полезно обсудить математику этого явления.
§ 3. Вращения
Разобрав вопрос о перенесении начала координат, мы рассмотрели первую задачу из серии более сложных теорем о симметрии физических законов. Следующая теорема утверждает, что и направления координатных осей можно выбрать произвольно. Другими словами, если мы сооружаем где-то какое-то устройство и наблюдаем, как оно работает, а затем по соседству соорудим аналогичное устройство, но расположим его под любым углом относительно первого, то будет ли второе устройство работать так же, как и первое? Вообще говоря, нет, если это, например, старые часы-ходики, известные еще нашим дедам. Если маятник ходиков расположен отвесно, они будут великолепно идти, но если их повернуть так, чтобы маятник уперся в стенку, верного времени они уже не покажут. Значит, нашу теорему нельзя применить к маятнику, если забыть о силе, которая заставляет его качаться. Если мы все-таки верим в симметрию физических законов относительно вращений, то мы должны сделать какие-то вполне определенные предположения о работе ходиков, например что для их работы важен не только часовой механизм, но и что-то, лежащее за его пределами, что-то, что следует обнаружить. Можно также предсказать, что ходики будут идти по-разному, если они попадут куда-то в другое место по отношению к загадочному пока источнику асимметрии (может быть, это Земля). Так и есть на самом деле. Мы знаем, что ходики на искусственном спутнике, например, вообще остановятся, ибо там отсутствует эффективная сила, а на Марсе скорость их хода будет совсем иной. Маятниковые часы содержат, помимо механизма, еще нечто вне их. Осознав этот факт, мы увидим, что вместе с ходиками нам придется повернуть и Землю. Но нам, конечно, незачем беспокоиться — сделать это очень легко. Мы просто подождем минуту или две, и Земля сама повернется, а ходики затикают уже в новом положении так же весело, как и раньше. Пока мы поворачиваемся в пространстве, измеряемые нами углы изменяются тоже; эти изменения не причиняют особых беспокойств, поскольку в новых условиях мы чувствуем себя точно так же, как и в старых. Здесь может скрываться источник ошибки; верно, что в новом, повернутом относительно старого положении законы остаются прежними, но неверно то, что во вращающейся системе координат справедливы те же законы, что и в покоящейся. Если проделать достаточно тонкие опыты, то можно установить, что Земля вращается, но ни один из этих опытов не скажет нам, что Земля повернулась. Другими словами, мы не можем при помощи этих опытов установить ориентацию Земли, но можем сказать, что ориентация изменяется.