Категории
Самые читаемые
💎Читать книги // БЕСПЛАТНО // 📱Online » Научные и научно-популярные книги » Прочая научная литература » Смерть в черной дыре и другие мелкие космические неприятности - Нил Тайсон

Читаем без скачивания Смерть в черной дыре и другие мелкие космические неприятности - Нил Тайсон

Читать онлайн Смерть в черной дыре и другие мелкие космические неприятности - Нил Тайсон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 39 40 41 42 43 44 45 46 47 ... 82
Перейти на страницу:

Между тем в недрах звезды идет процесс термоядерного синтеза. Однако в конце концов в жаркой зоне кончается гелий, и остается шар из углерода, окруженный гелиевой оболочкой, которая, в свою очередь, окружена всем остальным веществом звезды. И тогда ядро снова схлопывается. Когда его температура возрастает примерно до 600 миллионов градусов, углерод тоже начинает налетать на соседей и синтезировать более тяжелые элементы посредством все более и более сложных механизмов термоядерного синтеза, и все это время производится вдоволь энергии, чтобы не допустить дальнейшего коллапса. Фабрика элементов работает на полную мощность и выпускает азот, кислород, натрий, магний, кремний.

И так мы проходим по таблице Менделеева до самого железа. На железе процесс застопоривается – это последний элемент, который синтезируется в ядрах первых звезд. Если попытаться пережечь железо или более тяжелые элементы, в ходе таких реакций энергия будет не вырабатываться, а тратиться. Однако дело звезды – генерировать энергию, так что когда звезда обнаруживает, что в ядре у нее завелся железный шар, это не сулит ей ничего хорошего. У нее больше нет источника энергии, чтобы уравновесить неумолимую силу собственной гравитации, и ее ядро быстро схлопывается.

Коллапс ядра и сопутствующее стремительное повышение температуры запускает чудовищный взрыв – взрыв сверхновой. И тут-то появляется вдосталь энергии, чтобы создавать элементы тяжелее железа. Сразу после взрыва по окрестностям звезды разлетается огромное облако из всех элементов, унаследованных и созданных звездой. А теперь вспомним, каковы основные элементы этого облака: это атомы водорода, гелия, кислорода, углерода и азота. Знакомый набор? Все эти элементы – кроме гелия, который химически инертен, – основные ингредиенты жизни в привычном нам виде. Учитывая, какой поразительно разнообразный ассортимент молекул можно создать из этого набора элементов – а также с использованием других атомов, – скорее всего, перед нами основные ингредиенты жизни в непривычном для нас виде.

Итак, Вселенная готова, согласна и способна создавать в космическом пространстве первые молекулы и строить следующее поколение звезд.

* * *

Если газовые облака хотят создавать устойчивые молекулы, им нужен не только набор необходимых ингредиентов. Еще в них должно быть прохладно. Если температура в облаке выше нескольких тысяч градусов, частицы движутся слишком быстро, а столкновения атомов слишком энергичны, чтобы им удавалось слипаться воедино и складываться в молекулы. Даже если двум-трем атомам удается сойтись и создать молекулу, того и гляди, в них врежется еще какой-нибудь энергичный атом и конструкция распадется. Высокая температура и столкновения на высоких скоростях, которые так замечательно способствовали термоядерному синтезу, для химии лишь помеха.

Газовые облака вполне могут жить долго и счастливо, пока их поддерживает турбулентное движение в отдельных внутренних областях. Однако со временем это движение замедляется, внутренние области охлаждаются до такой степени, что гравитация одерживает верх и облако схлопывается. Более того, облако охлаждается благодаря тому же самому процессу, который формирует молекулы: когда два атома сталкиваются и слипаются, часть той энергии, которая их столкнула, уходит на сформированные связи между атомами или испускается в виде излучения.

Охлаждение оказывает удивительное воздействие на состав облака. Теперь атомы сталкиваются, словно медленные суда в море, слипаются и создают молекулы, а не разрушают их. Поскольку атомы углерода всегда рады соединиться со своими собратьями, углеродосодержащие молекулы могут быть крупными и сложными. Иногда они перепутываются сами с собой – словно пыль, которая собирается в комья под кроватью. Если позволяют ингредиенты, то же самое происходит с молекулами на основе кремния. И в том и в другом случае любая крупица пыли становится центром событий – на ней полно гостеприимных уголков и расщелинок, где атомы могут встречаться на досуге и создавать новые молекулы. Чем ниже температура, тем больше и сложнее могут становиться молекулы.

* * *

Среди первых и самых распространенных во Вселенной соединений, которые формируются, стоит температуре упасть ниже нескольких тысяч градусов, – несколько знакомых нам двухатомных и трехатомных молекул. Например, угарный газ (СО) стабилизируется задолго до того, как углерод конденсируется в пыль, а молекулярный водород (H2) становится главным компонентом остывающих газовых облаков, которые теперь – что вполне логично – называются молекулярными облаками. В числе трехатомных молекул, которые формируются сразу после двухатомных, – вода (H2O), углекислый газ (CO2), синильная кислота (HCN), сероводород (H2S) и диоксид серы (SO2). Еще образуется высокореактивная трехатомная молекула H3+, которая стремится скормить свой третий протон голодным соседкам, что способствует все новым химическим свиданиям.

Облако продолжает остывать, и когда температура падает ниже 100 К или около того, возникают более крупные молекулы – некоторые из них вполне могут найтись у вас под рукой в кухне или в гараже: ацетилен (C2H2), аммиак (NH3), формальдегид (H2CO), метан (CH4). Если облако еще холоднее, там можно найти главные ингредиенты других нужнейших веществ – антифриза (его делают из этиленгликоля), спиртных напитков (этиловый спирт), духов (бензол) и сахара (гликольальдегид), а также муравьиную кислоту, структура которой похожа на структуру аминокислот, из которых состоят белки.

Список молекул, которые дрейфуют в межзвездном пространстве, уже стремится к 130. Чемпионы по величине и сложности структуры – антрацен (C14H10) и пирен (C16H10), которые в 2003 году открыл в Туманности Красного Прямоугольника – до нее от Земли около 2300 световых лет – Адольф Н. Уитт из Университета Толедо в штате Огайо и его коллеги. Антрацен и пирен, которые состоят из взаимосвязанных стабильных углеродных колец, принадлежат к семейству молекул, которые химики, большие любители длинных ученых слов, называют полициклическими ароматическими углеводородами (ПАУ).

А если самые сложные молекулы в космосе основаны на углероде, значит, и мы, конечно, тоже.

* * *

Сейчас всем кажется, что существование молекул в космическом пространстве – нечто само собой разумеющееся, однако до 1963 года большинство астрофизиков об этом не подозревало – если учесть положение дел в других науках, это несколько поздновато. К 1963 году уже была описана молекула ДНК. «Довели до совершенства» атомную бомбу, водородную бомбу, баллистические ракеты. Шла работа над программой «Аполлон» по высадке человека на Луне. В лабораторных условиях удалось синтезировать одиннадцать элементов тяжелее урана.

Причина такого отставания астрофизики состояла в том, что еще не было открыто целое окно электромагнитного спектра – микроволновое излучение. Как мы видели в части III, оказывается, свет, который поглощают и испускают молекулы, как правило, приходится на микроволновую часть спектра, и до 1960 годов, когда появились микроволновые телескопы, Вселенная скрывала от нас волшебное разнообразие своего молекулярного ассортимента. Вскоре стало понятно, что темные области Млечного Пути – это без устали работающие химические фабрики. В 1963 году в межзвездной среде нашли гидроксил (ОН), в 1968 году – аммиак, в 1969 – воду, в 1970 – угарный газ, в 1975 – этиловый спирт, и все это оказалось перемешано в газообразный коктейль. К середине семидесятых в микроволновом излучении были обнаружены характерные черты почти сорока молекул.

Молекулы обладают определенной структурой, однако электронные связи, которые скрепляют атомы друг с другом, не жесткие – они расшатываются, елозят, скручиваются и растягиваются. Так вышло, что микроволны расположены именно в том диапазоне энергий, в котором можно стимулировать подобные движения молекул. Именно поэтому, в частности, работают микроволновые печки – много-много микроволн с нужной энергией заставляют вибрировать молекулы воды, содержащиеся в вашей еде. Трение между пляшущими частицами создает тепло, и еда быстро приготавливается изнутри.

Любой вид молекул в космосе, так же как и любой вид атомов, обладает своим неповторимым набором спектральных особенностей, иначе называемым сигнатурой. Этот набор легко сравнить со спектральными узорами из каталогов, которые собраны в лабораториях здесь, на Земле, а без лабораторных данных, зачастую дополненных теоретическими выкладками, мы бы и не знали, на что, собственно, смотрим. Чем крупнее молекула, тем больше связей призваны ее скреплять и тем больше у них возможностей елозить и расшатываться. А каждый способ елозить и расшатываться обладает своей характерной спектральной длиной волны или «цветом»; одни молекулы имеют сотни и даже тысячи «цветов» во всем микроволновом спектре – длин волн, на которых они могут поглощать и испускать свет, когда их электроны решают размяться. А выделить сигнатуру одной молекулы из мешанины остальных сигнатур – дело непростое, это все равно что вслушиваться в вопли целой толпы детишек, играющих в большой комнате, пытаясь расслышать голосок своего ребенка. Это трудно, но возможно. Надо лишь очень хорошо понимать, какие именно звуки обычно издает ваш малыш. Это и есть ваш лабораторный образец.

1 ... 39 40 41 42 43 44 45 46 47 ... 82
Перейти на страницу:
На этой странице вы можете бесплатно скачать Смерть в черной дыре и другие мелкие космические неприятности - Нил Тайсон торрент бесплатно.
Комментарии