Читаем без скачивания Структура реальности. Наука параллельных вселенных - Дэвид Дойч
Шрифт:
Интервал:
Закладка:
Но существует ли, как полагали древние в отношении к жизни, базовое физическое различие между объектами – носителями знания и объектами, не являющимися его носителями; различие, которое не зависит ни от среды, окружающей объекты, ни от их влияния на отдаленное будущее, а зависит только от непосредственных физических атрибутов этих объектов? Удивительно, но существует. Чтобы его увидеть, необходим взгляд с точки зрения мультиверса.
Рассмотрим ДНК живого организма, например, медведя, и предположим, что где-то в одном из его генов мы обнаруживаем последовательность TCGTCGTTTC. Эта конкретная цепочка из десяти молекул в специальной нише, состоящей из оставшейся части гена и его ниши, является репликатором. Она воплощает небольшой, но важный кусочек знания. Теперь предположим, чисто теоретически, что мы можем найти в ДНК медведя негенетический сегмент мусорной ДНК, в котором также есть последовательность TCGTCGTTTC. Эту последовательность не стоит называть репликатором, потому что она не дает практически никакого вклада в свою собственную репликацию и не несет знания. Это случайная последовательность. Итак, у нас есть два физических объекта, два сегмента одной и той же цепочки ДНК, один из которых воплощает знание, а другой является случайной последовательностью. Но они физически идентичны. Каким образом знание может быть фундаментальной физической величиной, если один объект обладает им, а другой, физически идентичный первому, им не обладает?
И тем не менее может, так как эти два фрагмента в действительности не идентичны. Они только кажутся идентичными, когда на них смотрят из некоторых вселенных, таких как наша. Давайте посмотрим на них еще раз так, как они выглядят в других вселенных. Мы не можем наблюдать другие вселенные непосредственно, поэтому нам придется воспользоваться теорией.
Нам известно, что ДНК живых организмов подвержены случайным естественным вариациям – мутациям – в последовательности молекул A, C, G и T. Согласно теории эволюции от появления таких мутаций зависят адаптации в генах, а, следовательно, зависит и само существование генов. Из-за мутаций популяция любого гена обладает некоторой вариативностью, и особи – носители генов с более высокой степенью адаптации, как правило, оставляют больше потомков, чем другие особи. Большая часть вариаций гена делает его неспособным вызывать свою репликацию, потому что измененная последовательность уже не приказывает клетке производить что-то полезное. Другие вариации просто делают репликацию менее вероятной (то есть они сужают нишу гена). Однако некоторые могут воплощать новые команды, которые сделают репликацию более вероятной. Так происходит естественный отбор. С каждым поколением вариации и репликации степень адаптации выживших генов имеет тенденцию к увеличению. Далее, случайная мутация, вызванная, например, попаданием космической частицы, вызывает вариацию не только внутри популяции организма в одной вселенной, но и между вселенными. Космическая частица – это высокоэнергетическая субатомная частица, и, подобно фотону, испускаемому электрическим фонариком, в разных вселенных она перемещается в различных направлениях. Поэтому, когда космическая частица попадает в цепочку ДНК и вызывает мутацию, некоторые из ее партнеров в других вселенных не попадают в свои копии цепочки ДНК или попадают в этих цепочках в другие места, вызывая, следовательно, другие мутации. Таким образом, попадание одной космической частицы в одну молекулу ДНК в общем случае вызовет в различных вселенных множество различных мутаций.
Когда мы размышляем, как конкретный объект может выглядеть в других вселенных, нам не следует заглядывать в мультиверс так далеко, что распознать партнера этого объекта в другой вселенной станет невозможно. Возьмем, например, сегмент ДНК. В некоторых вселенных совсем нет молекул ДНК. Другие вселенные, содержащие ДНК, настолько не похожи на нашу, что не существует способа распознать, какой сегмент ДНК в другой вселенной соответствует тому сегменту, который мы рассматриваем в нашей Вселенной. Бессмысленно задаваться вопросом о том, как наш конкретный сегмент ДНК выглядит в подобной вселенной, поэтому, во избежание появления такой неопределенности, мы должны рассматривать только те вселенные, которые достаточно похожи на нашу. Например, мы могли бы рассматривать только те вселенные, в которых существуют медведи, и в которых образец ДНК медведя был помещен в анализатор, запрограммированный на распечатку десяти букв, представляющих структуру в заданной позиции относительно конкретных ориентиров точно определенной цепочки ДНК. Последующее обсуждение останется в силе, если мы выберем любой другой разумный критерий распознавания соответствующих сегментов ДНК в близких вселенных.
По любому такому критерию сегмент гена медведя почти во всех близких вселенных должен иметь такую же последовательность, как и в нашей. Так происходит потому, что этот ген, по-видимому, обладает высокой степенью адаптации, а это значит, что большая часть его вариантов не сумеет обеспечить свое копирование в большинстве вариантов среды, а потому не сможет появиться именно в этом сегменте ДНК живого медведя. Наоборот, когда сегмент ДНК, не несущий знание, подвергается почти любой мутации, мутировавший вариант тем не менее остается способным к копированию. За многие поколения репликации произойдет множество мутаций, и в большинстве своем они не окажут никакого влияния на репликацию. Следовательно, сегмент мусорной последовательности, в отличие от своего генного собрата, будет совершенно гетерогенным в различных вселенных. Вполне может быть так, что каждая возможная вариация его последовательности будет в равной степени представлена в мультиверсе (то есть то, что мы должны подразумевать под этой последовательностью, будет совершенно случайно).
Таким образом, мультиверсная перспектива открывает дополнительную физическую в структуру ДНК медведя. В нашей Вселенной она содержит два отрезка с последовательностью TCGTCGTTTC. Один из них является частью гена, другой не является. В большинстве других близких вселенных первый из двух отрезков имеет ту же самую последовательность, TCGTCGTTTC, что и в нашей вселенной, но второй отрезок сильно различается в близких вселенных. Таким образом, в разрезе мультиверса эти два сегмента даже отдаленно не похожи друг на друга (рис. 8.1).
Мы вновь размышляли слишком парохиально и пришли к ложному выводу о том, что сущности, несущие знание, могут быть физически идентичны сущностям, не несущим знание; а это, в свою очередь, ставит под сомнение фундаментальность знания. Однако к настоящему моменту мы уже совершили почти полный круг. Мы видим, что древняя идея об особых физических свойствах живой материи почти истинна: физически особенна не живая материя, а материя, несущая знание. В одной вселенной она выглядит беспорядочной; но среди вселенных она имеет регулярную структуру, подобно кристаллу в мультиверсе.
Таким образом, знание – это все-таки фундаментальная физическая характеристика, а явление жизни чуть менее фундаментально.
Представьте себе, что вы смотрите на молекулу ДНК медвежьей клетки в электронный микроскоп, пытаясь отличить гены от негенетических последовательностей и оценить степень адаптации каждого гена. В любой отдельной вселенной это невозможно. Свойство быть геном, то есть иметь высокую степень адаптации, является – постольку, поскольку ее можно обнаружить в пределах одной вселенной, – чрезвычайно сложным. Это эмерджентное свойство. Вам пришлось бы сделать множество копий ДНК с вариациями, применить генную инженерию, чтобы создать множество эмбрионов медведей для каждого варианта ДНК, вырастить этих медведей, поселив их в различные среды, соответствующие экологической нише медведя, и посмотреть, какие медведи оставят больше потомков.
Но с волшебным микроскопом, который мог бы заглянуть в другие вселенные (что, я подчеркиваю, невозможно: мы используем теорию, чтобы представить – или воссоздать – то, что, как нам известно, должно там находиться), эта задача стала бы простой. Как на рис. 8.1, гены отличались бы от негенов как обработанные поля отличаются на аэрофотоснимках от джунглей, или как кристаллы отличаются от раствора, в котором они выросли. Они регулярны во многих близких вселенных, тогда как все негены, сегменты мусорной последовательности, нерегулярны. Что касается степени адаптации гена, оценить ее почти так же просто. Гены с лучшей адаптацией будут иметь одну и ту же структуру в более обширном диапазоне вселенных – у них будут более крупные «кристаллы».
Теперь давайте отправимся на другую планету и попытаемся найти местные формы жизни, если таковые там имеются. Опять-таки сложность этой задачи хорошо известна. Вам пришлось бы провести сложные и тонкие эксперименты, бесконечные провалы которых стали предметом множества научно-фантастических рассказов. Но если только вы могли бы наблюдать в телескоп весь мультиверс, жизнь и ее следствия были бы очевидны с первого взгляда. Вам всего лишь необходимо искать сложные структуры, которые кажутся нерегулярными в любой отдельной вселенной, но идентичными во многих близких вселенных. Если вы увидите что-либо подобное, вы обнаружите некое физически воплощенное знание. А где есть знание, там должна быть жизнь, по крайней мере прошлая.