Читаем без скачивания Полный курс за 3 дня. Гистология - Аурика Луковкина
Шрифт:
Интервал:
Закладка:
1) образование веретена деления в профазе митоза;
2) участие в формировании микротрубочек клеточного каркаса;
3) выполнение роли базисных телец ресничек в реснитчатых эпителиальных клетках центриоли.
Положение центриолей в некоторых эпителиальных клетках определяет их полярную дифференцированность.
МикротрубочкиМикротрубочки – полые цилиндры (внешний диаметр – 24 мм, внутренний – 15 им), являются самостоятельными органеллами, образуя цитоскелет. Они также могут входить в состав других органелл – центриолей, ресничек, жгутиков. Стенка микротрубочек состоит из глобулярного белка тубулина, который образован отдельными округлыми образованиями глобулы диаметром 5 нм. Глобулы могут находиться в гиалоплазме в свободном состоянии или соединяться между собой, в результате чего формируются микротрубочки. Они могут затем вновь распадаться на глобулы. Таким образом формируются и затем распадаются микротрубочки веретена деления в разные фазы митоза. Однако в составе центриолей, ресничек и жгутиков микротрубочки являются устойчивыми образованиями. Большая часть микротрубочек участвует в формировании внутриклеточного каркаса, который поддерживает форму клетки, обусловливая определенное положение органелл в цитоплазме, а также предопределяет направление внутриклеточных перемещений. Белки-тубулины не обладают способностью к сокращению, следовательно, и микротрубочки не сокращаются. В составе ресничек и жгутиков происходит взаимодействие микротрубочек между собой, их скольжение друг относительно друга, что обеспечивает движение этих органелл.
МикрофибриллыМикрофибриллы (промежуточные филаменты) представляют собой тонкие неветвящиеся нити.
В основном микрофибриллы локализуются в кортикальном, (подмембранном) слое цитоплазмы. Они состоят из белка, который в различных по классу клетках имеет определенную структуру (в эпителиальных клетках – это белок кератин, в мышечных клетках – десмин).
Функциональная роль микрофибрилл – участвовать наряду с микротрубочками в формировании клеточного каркаса, выполняя опорную функцию.
Микротрубочки могут объединяться в пучки и образовывать тонофибриллы, которые рассматриваются как самостоятельные органеллы и выполняют опорную функцию.
МикрофиламентыМикрофиламенты – еще более тонкие нитчатые структуры (5–7 нм), состоящие из сократительных белков (актина, миозина, тропомиозина).
Микрофиламенты локализуются в основном в кортикальном слое цитоплазмы.
В совокупности микрофиламенты составляют сократительный аппарат клетки, обеспечивающий различные виды движений: перемещение органелл, ток гиалоплазмы, изменение клеточной поверхности, образование псевдоподии и перемещение клетки.
Скопление микрофиламентов в мышечных волокнах образует специальные органеллы мышечной ткани – миофибриллы.
ВключенияВключения – непостоянные структурные компоненты цитоплазмы. Классификация включений:
1) трофические;
2) секреторные;
3) экскреторные;
4) пигментные.
В процессе жизнедеятельности клеток могут накапливаться случайные включения – медикаментозные, частички различных веществ.
Трофические включения – лецитин в яйцеклетках, гликоген или липиды в различных клетках.
Секреторные включения – это секреторные гранулы в секретирующих клетках (например, зимогенные гранулы в ацинозных клетках поджелудочной железы, секреторные гранулы в различных эндокринных клетках).
Экскреторные включения – это вещества, которые необходимо удалить из клетки (например, гранулы мочевой кислоты в эпителии почечных канальцев).
Пигментные включения – меланин, гемоглобин, липофусцин, билирубин. Эти включения придают клетке, которая их содержит, определенную окраску: меланин окрашивает клетку в черный или коричневый цвет, гемоглобин – в желто-красный, билирубин – в желтый. Пигментные клетки содержатся только в определенных типах клеток: меланин – в меланоцитах, гемоглобин – в эритроцитах. Липофусцин, в отличие от других указанных пигментов, может содержаться во многих типах клеток. Наличие липофусцина в клетках (особенно в значительном количестве) говорит о старении и функциональной неполноценности.
Тема 5. Морфология и функции ядра. Репродукция клеток
В организме человека содержатся только эукариотические (ядерные) типы клеток. Безъядерные структуры (эритроциты, тромбоциты, роговые чешуйки) являются вторичными образованиями, так как они образуются из ядерных клеток в результате их специфической дифференцировки.
Большинство клеток содержит одно ядро, лишь редко встречаются двухядерные и многоядерные клетки. Форма ядра чаще всего округлая (сферическая) или овальная. В зернистых лейкоцитах ядро подразделяется на сегменты. Локализуется ядро обычно в центре клетки, но в клетках эпителиальной ткани может быть сдвинуто к базальному полюсу.
Структурные элементы ядра четко выражены только в определенный период клеточного цикла – в интерфазу. В период деления клетки (митоза или мейоза) происходят выраженные изменения структур клеток: одни исчезают, другие значительно преобразуются.
Структурные элементы ядраСтруктурные элементы ядра, перечисленные ниже, бывают хорошо выражены только в интерфазе:
1) хроматин;
2) ядрышко;
3) кариоплазма;
4) кариолемма.
Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл толщиной 20–25 км, которые могут располагаться в ядре рыхло или компактно.
На этом основании можно выделить эухроматин – рыхлый (или деконденсированный) хроматин, слабо окрашиваемый основными красителями, и гетерохроматин – компактный (или конденсированный) хроматин, хорошо окрашиваемый основными красителями.
При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл, и хромосомы снова преобразуются в хроматин. Таким образом, хроматин и хромосомы являются различными состояниями одного и того же вещества.
По химическому строению хроматин состоит из:
1) дезоксирибонуклеиновой кислоты (ДНК) – 40 %;
2) белков – около 60 %;
3) рибонуклеиновой кислоты (РНК) – 1 %.
Ядерные белки представлены двумя формами:
1) щелочными (гистоновыми) белками – 80–85 %;
2) кислыми белками – 15–20 %.
Гистоновые белки связаны с ДНК и образуют дезоксинуклеопротеид, представляющий собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК на различные РНК, с помощью чего в последующем происходит синтез белковых молекул. Процессы траскрипции в ядре осуществляются только на свободных хромосомных фибриллах, т. е. на эухроматине. В конденсированном хроматине эти процессы не осуществляются, поэтому гетерохроматин называют неактивным хроматином.
Соотношение эухроматина и гетерохроматина является показателем синтетической активности клетки. На хроматиновых фибриллах в S-периоде интерфазы осуществляется редупликация ДНК. Эти процессы могут протекать также и в гетерохроматине, но значительно дольше.
Ядрышко – сферическое образование (1–5 мкм в диаметре), хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4 и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе, в определенных участках некоторых хромосом – ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединицы рибосомы.
Микроскопически в ядрышке различают:
1) фибриллярный компонент (локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП));
2) гранулярный компонент (локализуется в периферической части ядрышка и представляет собой скопление субъединиц рибосом).
В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединицы рибосом прекращаются, ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом, появляется ядрышко.
Кариоплазма (нуклеоплазма или ядерный сок), состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, однако при электронной микроскопии в ней можно обнаружить мелкие гранулы (15 нм), состоящие из рибонуклеопротеидов. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющими расщепление углеводов с образованием АТФ.