Читаем без скачивания 100 великих нобелевских лауреатов - Сергей Мусский
Шрифт:
Интервал:
Закладка:
Томсон сразу стал использовать открытия Рентгена и Беккереля в своих исследованиях, и, как он вспоминал, эти открытия позволили производить многие эксперименты, которые до этого были невыполнимы. Вначале Томсон изучал действие рентгеновских лучей на разряд в газе. «К моему великому восторгу, - писал Томсон о рентгеновских лучах, - они делали газ проводником тока, даже если электрическая сила, приложенная к газу, была чрезвычайно мала… X-лучи, казалось, превращали газ в газообразный электролит».
«Вскоре из этих опытов были получены важные результаты, - пишет С.П. Кудрявцев. - Во-первых, Томсон обнаружил, что после прекращения действия лучей проводимость в газе еще сохранялась какое-то время и прекращалась после фильтрования газа через стекловату. Во-вторых, было выяснено, что для фильтрования не обязательно использовать стекловату, вполне достаточно подвергнуть газ действию электрических сил. В-третьих, было найдено нарастание силы тока при малых напряжениях в согласии с законом Ома, при больших напряжениях - отклонение от закона Ома и при некотором большом напряжении - наличие тока насыщения.
Из опытов также следовало, что после прекращения действия лучей в газе еще остаются заряженные частицы, которые и являются носителем тока. О том, что эти частицы отрицательно и положительно заряжены, говорил тот факт, что электрические силы прекращали остаточную проводимость, т.е. отрицательно заряженные частицы осаждались на положительном электроде, а положительные - на отрицательном».
Окрыленный первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанес тонкий слой вещества, способного светиться под ударами налетающих частиц. (Получился предок электронно-лучевых трубок, так хорошо знакомых нам в век телевизоров.)
Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришел в результате эксперимента, были поразительны. Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим. Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом?
Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд. Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов…
Томсон писал, что «постоянство значения - для ионов, составляющих катодные лучи, есть поразительный контраст изменчивости соответствующих величин для ионов, которые несут ток в электролитах… Когда мы рассматриваем электрический заряд, несомый ионом в катодных лучах, мы, принимая, что он равен по модулю заряду, несомому водородным ионом при электролизе, заключаем, что масса водородного иона должна быть в 770 раз больше массы иона в катодных лучах; следовательно, носитель отрицательного электричества в этих лучах должен быть очень малым по сравнению с массой водородного атома».
Этот результат ошеломил Томсона, и он стал его тщательно изучать, улучшил методику эксперимента с целью получения более точных значений массы частиц, испускаемых металлами под действием ультрафиолетового света, для частиц, испускаемых нагретыми металлами, и находит его таким же, как и для катодных частиц.
После долгих размышлений Томсон приходит к следующим заключениям:
1) «…атомы не неделимы, отрицательно заряженные частицы могут вылетать из них под действием электрических сил, удара быстро движущихся атомов, ультрафиолетового света или тепла»;
2) «…все эти частицы одинаковой массы и несут одинаковый заряд отрицательного электричества от любого рода атомов, и они являются составной частью всех атомов»;
3) «…масса этих частиц меньше однотысячной массы атома водорода».
29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, состоялось выступление Томсона. Оно было встречено восторгом присутствующих. Еще бы! Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зернами, непроницаемыми и неделимыми, частицами без всякого внутреннего строения… Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему. Систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул - электронов.
Название, некогда предложенное Стонеем для обозначения величины наименьшего электрического заряда - электрон, стало именем неделимого «атома электричества».
В 1904 году Томсон же и представил новую модель атома. Она представляла собой также равномерно заряженную положительным электричеством сферу, внутри которой вращались отрицательно заряженные корпускулы, число и расположение которых зависело от природы атома. Ученому не удалось решить общую задачу устойчивого расположения корпускул внутри сферы, и он остановился на частном случае, когда корпускулы лежат в одной плоскости, проходящей через центр сферы.
Томсон научил физиков управлять электронами, и в этом его основная заслуга. Развитие метода Томсона составляет основу электронной оптики, электронных ламп, современных ускорителей заряженных частиц.
В 1906 году Томсону за его исследование прохождения электричества через газы была присуждена Нобелевская премия по физике.
Томсон разработал и методы изучения положительно заряженных частиц. Вышедшая в 1913 году его монография «Лучи положительного электричества» положила начало масс-спектроскопии.
В лаборатории Томсона начались первые измерения элементарного заряда из наблюдения движения заряженного облака в электрическом поле. Этот метод был в дальнейшем усовершенствован Милликеном и привел к его ставшим классическими измерениям заряда электрона.
Всем сердцем Томсон был привязан к Кембриджу. Лишь несколько раз он выезжал за границу. Когда разразилась Первая мировая война, Томсон вошел в состав правительственной комиссии, занимавшейся организацией научных исследований, важных для морского флота. В частности, ученые Кембриджа решали задачу обнаружения подводных лодок.
В 1918 году Томсон получил высокий пост президента Тринити-колледжа. Через год он передал руководство Кавендишской лабораторией своему выдающемуся ученику Резерфорду, но с лабораторией не порывал до конца жизни. Он оставил здесь небольшую комнату, где и работал со своими учениками.
Умер Томсон 30 августа 1940 года.
МАКС ФОН ЛАУЭ
(1879- 1960)
Творчество Лауэ связано с важнейшими проблемами физики, решение которых обусловило коренную перестройку науки. Он был глубоким теоретиком и первоклассным экспериментатором. Ученый заложил основы одного из могущественных средств исследования вещества - рентгеноструктурного анализа.
Макс Теодор Феликс фон Лауэ родился 9 октября 1879 года в Пфаффендорфе. Его отца, Юлиуса Лауэ, чиновника ведомства военных судов, часто переводили с места на место. Поэтому мальчик сменил несколько школ, прежде чем окончил протестантскую гимназию в Страсбурге.
Мать, Минна Лауэ, была настоящим другом сына и всегда разделяла его интересы. Именно она привела двенадцатилетнего мальчика в берлинское общество «Урания», некий аналог нашего общества «Знание».
В 1898 году в Страсбурге Макс закончил гимназию и через несколько дней поступил на военную службу. Но при этом он в 1898-1999 годах посещал лекции по физике в Страсбургском, а с 1899 года в Геттингенском университетах. Тогда-то и стало ясно Лауэ, что его призвание - теоретическая физика. В этом выборе свою роль сыграли Фойгт, Гильберт, а также опубликованные лекции Г. Кирхгофа. Зимой 1901/02 года Лауэ учился в Мюнхенском университете, а летом 1902 года переехал в Берлин, где посещал лекции Планка по теоретической оптике и термодинамике.
Под его руководством в июле 1903 года Макс с блеском защитил докторскую диссертацию, посвященную интерференции света на плоскопараллельных пластинках. Тогда же определилась и область научных интересов молодого ученого - физическая оптика. Совместная работа с Планком со временем переросла в крепкую дружбу.
Лауэ решил продолжить образование в Геттингене. Здесь в 1904 году Макс сдал экзамен на право преподавания в высшей школе.
Осенью 1905 года Планк предложил Лауэ место ассистента в Институте теоретической физики. За три года работы здесь молодой ученый внес существенный вклад в теорию излучения. Он доказал обратимый характер такого разделения пучка: полная энтропия когерентных лучей равна энтропии первоначального пучка, из которых они образовались.