Категории
Самые читаемые

Читаем без скачивания Курс общей астрономии - П.И.Бакулин

Читать онлайн Курс общей астрономии - П.И.Бакулин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 55 56 57 58 59 60 61 62 63 ... 68
Перейти на страницу:

§ 115. Астрофизические исследования с воздушных шаров, самолетов и космических аппаратов. Понятие о радиолокационных методах

До начала сороковых годов XX в. астрономы использовали для своих наблюдений почти исключительно визуальную область спектра и прилегающие к ней участки

приблизительно от 3000 до 7000 Е. После окончания второй мировой войны стали быстро развиваться радиоастрономические методы исследования (радиоастрономия). Успехи радиоастрономии показали, как важно вести исследования в новых областях спектра, распространить наблюдения на возможно более широкий диапазон длин волн. Однако земная атмосфера непрозрачна в области l

< 3000 Е и 15 мк <l <1 мм. Следовательно, возникла задача проведения астрономических исследований вне земной атмосферы. В принципе сравнительно просто эта проблема решается для инфракрасного и субмиллиметрового излучения (15 мк <l <<1 мм). Основным веществом, поглощающим инфракрасную радиацию, является водяной пар, концентрация которого быстро уменьшается с высотой. На высотах около 25-30 км земная атмосфера становится прозрачной для инфракрасного излучения. Эти высоты вполне доступны современным воздушным шарам (“баллонам”), грузоподъемность которых достаточна, чтобы нести довольно большой телескоп диаметром до 1 м. Наблюдения с такой высоты имеет смысл проводить и в видимой области спектра, так как атмосферное дрожание здесь уже не будет ограничивать разрешающей силы телескопа. Первый “баллонный” телескоп “Стратоскоп-1” (диаметром в 50 см) был построен в США для фотографирования солнечной грануляции. Другой американский баллонный телескоп “Стратоскоп-2” (диаметром 90 см) запускался с целью исследования инфракрасных спектров планет и звезд. Подобные телескопы управляются в полете с Земли по радио. Телевизионные камеры, установленные на искателе, гиде и в фокусе Кассегрена, позволяют наводить телескоп на объект почти так же уверенно, как и при обычных наземных наблюдениях. В СССР успешно проводились полеты стратосферного солнечного телескопа с целью фотографирования солнечной грануляции. Для инфракрасной астрономии большие перспективы связаны с возможностью установки телескопов на самолетах. Самолетные летающие обсерватории не могут подниматься на такую большую высоту, как баллонные телескопы, однако они имеют ряд преимуществ (управляемый полет, присутствие наблюдателя на борту и т.п.). В ультрафиолетовой и рентгеновской областях спектра земная атмосфера поглощает так сильно, что для их изучения надо поднимать аппаратуру на высоту не менее 100 км над земной поверхностью, а это можно сделать только с помощью ракет и искусственных спутников Земли. Ракеты можно запускать чаще, но зато время их полета ограничено: всего несколько минут. На борту ракет и спутников устанавливаются небольшие телескопы с фотоэлектрическими фотометрами, спектральными аппаратами, приборы для приема рентгеновского излучения. Приборы действуют автоматически по заданной программе, а наблюдательный материал передается по радио, либо, в случае ракет и приземляющихся спутников, может быть получен исследователем по окончании полета. Обычно головка ракеты с научным оборудованием (приборный отсек) отделяется от ракеты (до того, как она входит в плотные слои атмосферы) и опускается на парашюте. Американский искусственный спутник “Ухуру” (“Свобода” на языке суахили; запуск производился в Африке в 1970 г.) был специально сконструирован для получения карты всего неба в рентгеновских лучах (энергии квантов от 2 до 10 кэв). С его помощью было обнаружено 125 рентгеновских источников, из которых более половины ранее не были известны. Другой астрономический спутник “ОАО-3”, или “Коперник” (названный в честь великого польского астронома и запущенный в 1973 г., когда праздновался юбилей Коперника – 500 лет со дня рождения), представляет собой телескоп-рефлектор диаметром 80 см, снабженный ультрафиолетовым спектрометром. С его помощью были получены спектры большого количества звезд в области от 700 до 3000 Е, недоступной наблюдениям с Земли. Автоматическая система фотоэлектрического гидирования при помощи небольших реактивных двигателей ориентации поддерживала при регистрации спектра точность наведения до 0»,1. В настоящее время астрономия и космическая техника подошли вплотную к созданию длительно действующих крупных телескопов, специально сконструированных для работы на орбитах искуственных спутников Земли. Такой телескоп должен иметь систему автоматического наведения и высокоточной ориентации. Для технического обслуживания его будут периодически посещать космонавты. Большое значение для создания подобных космических обсерваторий имеет опыт работы, полученный советскими космонавтами на орбитальных станциях типа “Салют”. Другое важное направление, связанное с прогрессом ракетной техники, – это исследование Солнечной системы автоматическими межпланетными станциями. Советские автоматические станции трижды фотографировали обратную сторону Луны (в 1959, 1965 и 1969 гг.). 3 февраля 1966 г. Советский Союз впервые осуществил мягкую посадку автоматической станции на Луну и передачу изображения непосредственно с ее поверхности (“Луна-9”). 3 апреля 1966 г. впервые был успешно выведен на орбиту искусственный спутник Луны (советская станция “Луна-10”). Широкая программа исследования Луны осуществлялась также американскими учеными с помощью аппаратов типа “Рейнджер” (лунные станции с жесткой посадкой), “Орбитер” (искусственные спутники Луны), “Сервейор” (станции с мягкой посадкой) и “Аполлон” (станции, обеспечивающие высадку астронавтов на Луну). Американская программа ставила целью доставить на Луну человека. Советская программа была нацелена по-иному: исследовать Луну с помощью автоматических станций. Эти станции были двух типов: подвижные “луноходы” (“Луноход-1 и 2”) и станции, обеспечивающие доставку грунта с Луны на Землю (“Луна-16, 20 и 24”). Космические аппараты СССР и США совершили успешные полеты к Венере, Марсу, Меркурию и Юпитеру. Для исследования планет используются автоматические межпланетные станции (АМС) трех различных модификаций: а) пролетные, которые совершают однократное (в некоторых случаях двух– или трехкратное) прохождение вблизи исследуемой планеты, б) орбитальные, т.е. выводимые на орбиту искусственных спутников, и в) спускаемые, т.е. опускающиеся прямо на поверхность планеты и обеспечивающие прямые измерения физико-химических характеристик атмосферы, а иногда и поверхности. Пролетные аппараты – это своего рода разведчики: они получают сравнительно небольшой объем данных. Орбитальные аппараты позволяют обследовать значительную часть планеты, но только дистанционными (оптическими и радиофизическими) методами. Спускаемые аппараты получают весьма детальные данные об атмосфере и поверхности (недоступные пролетным и орбитальным аппаратам), но только в месте посадки. Наиболее оптимальным является сочетание орбитального и спускаемого аппарата, когда их данные взаимно дополняются. Такие сочетания были осуществлены в советских исследованиях Марса и Венеры. В 1974 г. были совершены вывод на орбиту искусственного спутника Марса “Марс-5” и посадка спускаемого аппарата “Марс-6”. В 1975 г. на орбиту искусственных спутников Венеры были выведены два искусственных спутника и совершили посадку два спускаемых аппарата (АМС “Венера-9” и “Венера-10”). Это были первые в мире искусственные спутники Венеры, а спускаемые аппараты впервые в мире передали на Землю изображение поверхности другой планеты. Советские спускаемые аппараты типа “Венера” исследуют атмосферу Венеры начиная с 1967 г. Ввиду исключительной важности этих экспериментов мы опишем их более детально. Главной научной задачей АМС являлось определение основных физических параметров атмосферы планеты (температуры и давления) и ее химического состава. Станции состояли из орбитального отсека и спускаемого аппарата. Общий вид станции “Венера-4” дан на рис. 120. Орбитальный отсек нес спускаемый аппарат, научные приборы для исследований на трассе полета, солнечные батареи, радиокомплекс и устройства, необходимые для коррекции полета, в том числе жидкостный реактивный двигатель. Операция коррекции представляет собой исправление орбиты, которое вводится в определенный момент полета, когда АМС отошла от Земли достаточно далеко и определено, насколько реальная орбита отклонилась от заданной. Советские автоматические станции входили в атмосферу Венеры, в соответствии с программой, на второй космической скорости и по мере снижения тормозились. Когда перегрузки достигали определенной достаточно большой величины, происходило разделение спускаемого аппарата и орбитального отсека. Спускаемый аппарат представлял собой сферу диаметром около 1 м с теплоизоляцией, способной предохранить аппарат от сгорания при торможении. Когда он тормозился до скорости около 300 м/сек, по команде датчика внешнего давления вводились в действие тормозной и основной парашюты, которые уменьшали скорость снижения до нескольких метров в секунду. Одновременно с этим раскрывались антенные системы и включались радиовысотомер и радиопередатчик. Затем шла передача результатов изменений давления, плотности, температуры, химического состава и других данных по мере снижения спускаемого аппарата. Начиная с “Венеры-7” (1970 г.) измерения проводились не только при спуске, но и в течение некоторого времени после посадки на поверхность планеты (рис. 121). Помимо измерений на спускаемых; аппаратах, проводившихся в нижних слоях атмосферы Венеры, важные результаты были получены с помощью научной аппаратуры, установленной на орбитальных отсеках. Эта аппаратура позволила получить данные о строении облачного слоя, надоблачной атмосферы, о полях и частицах в окрестностях планеты. На Марс посадить космический аппарат еще труднее, чем на Венеру, из-за малой плотности его атмосферы. Мягкая посадка на Марс была впервые осуществлена советским спускаемым аппаратом “Марс-3” (2 декабря 1971 г.), который отделился от автоматической станции, ставшей искусственным спутников планеты. До недавнего времени общине свойством всех астрономических методов был их пассивный характер: мы только наблюдали явления, регистрировали то, что природа сама нам показывала. Этим астрономия принципиально отличалась от физики, в основе которой лежит эксперимент – активный метод исследования. Экспериментатор не просто наблюдает явления природы, а вторгается в них, меняет условия опыта и, конечно, имеет больше шансов понять сущность явлений, чем если бы он ограничился пассивным наблюдением. Полеты космических кораблей постепенно превращают астрономию в экспериментальную науку. Со временем в исследовании планет и межпланетного пространства роль эксперимента в астрономии будет, по-видимому, быстро возрастать. Заметим, что полеты АМС являются не единственным средством экспериментального исследования Солнечной системы. Чисто экспериментальным методом является и радиолокация небесных тел. В направлении космического тела посылается мощный импульс радиоволн и принимается отраженный импульс. По запаздыванию отраженного импульса можно определить расстояние, по величине – коэффициент отражения. Форма импульса позволяет судить о размерах тела и степени гладкости его поверхности. Вращение исследуемого тела вызывает расширение импульса по частоте вследствие эффекта Доплера, и скорость вращения может быть определена по величине размытия. Могут исследоваться отражения от отдельных деталей на поверхности планет, облачного слоя, ионосферы и т.д. Конечно, такой способ годится только для объектов не очень удаленных; по-видимому, радиолокации никогда не удастся выйти за пределы Солнечной системы. Что же касается изучения самой Солнечной системы, то в этом радиолокация добилась уже больших успехов, а возможности ее использованы далеко не полностью. В качестве важнейших достижений радиолокационного метода укажем на измерение расстояния до Венеры, которое привело к значительному уточнению астрономической единицы, а также на определение периода вращения и радиуса этой планеты (см § 135). СОЛНЦЕ Солнце – типичная звезда, свойства которой изучены подробнее и лучше, чем других звезд, благодаря ее исключительной близости к Земле. В этой главе мы не только кратко рассмотрим имеющуюся информацию о Солнце, но и несколько подробнее те его свойства, которые характерны для всех звезд, что окажется весьма полезным при изучении их физической природы. § 116. Общие сведения о Солнце Солнце представляется кругом с резко очерченным краем (лимбом). Видимый радиус Солнца несколько меняется в течение года вследствие изменения расстояния Земли от Солнца, вызванного эллиптичностью земной орбиты. Когда Земля в перигелии (начало января) видимый диаметр Солнца составляет 32’35”, а в афелии (начало июля) –33'31». На среднем расстоянии от Земли (1 а.е.) видимый радиус Солнца составляет 960», что соответствует линейному радиусу Объем Солнца а его масса что дает среднюю плотность его вещества Ускорение силы тяжести на поверхности Солнца Наблюдения отдельных деталей на солнечном диске, а также измерения смещений спектральных линий в различных его точках говорят о движении солнечного вещества вокруг одного из солнечных диаметров, называемого осью вращения Солнца. Плоскость, проходящая через центр Солнца и перпендикулярная к оси вращения, называется плоскостью солнечного экватора. Она образует с плоскостью эклиптики угол в 7° 15' и пересекает поверхность Солнца по экватору. Угол между плоскостью экватора и радиусом, проведенным из центра Солнца в данную точку на его поверхности называется гелиографической широтой. Вращение Солнца обладает важной особенностью: его угловая скорость w убывает по мере удаления от экватора и приближения к полюсам (рис. 122), так что в среднем w = 14°,4 – 2°,7 sin2В, где В – гелиографическая широта. В этой формуле угловая скорость w измеряется углом поворота за сутки. Таким образом, различные зоны Солнца вращаются вокруг оси с различными периодами. Для точек экватора сидерический период составляет 25 суток, а вблизи полюсов он достигает 30 суток. Вследствие движения Земли вокруг Солнца его вращение представляется земному наблюдателю несколько замедленным: период вращения на экваторе составляет 27 суток, а у полюсов – 32 суток (синодический период вращения). Поскольку Солнце вращается не как твердое тело, систему гелиографических координат нельзя жестко связать со всеми точками его поверхности. Условно гелиографические меридианы жестко связываются с точками, имеющими гелиографические широты В = ±16°. Для них сидерический период обращения составляет 25,38 суток, а синодический равен 27,28 суток. За начальный гелиографический меридиан принят тот, который 1 января 1854 г. в 0h по всемирному времени проходил через точку пересечения солнечного экватора с эклиптикой. § 117. Спектр и химический состав Солнца В видимой области излучение Солнца имеет непрерывный спектр, на фоне которого заметно несколько десятков тысяч темных линий поглощения (рис. 123), называемых фраунгоферовыми по имени австрийского физика Фраунгофера, впервые описавшего эти линии в 1814 г. Наибольшей интенсивности непрерывный спектр достигает в синезеленой части спектра, у длин волн 4300-5000 Е (см рис. 91). В обе стороны от максимума интенсивность солнечного излучения убывает. Солнечный спектр далеко простирается в невидимые коротковолновую и длинноволновую области. Результаты внеатмосферных наблюдений спектра Солнца, полученные с ракет и искусственных спутников показывают, что до длин волн около 2000 Е характер солнечного спектра такой же, как и в видимой области. Однако в более коротковолновой области он резко меняется: интенсивность непрерывного спектра быстро падает, г темные фраунгоферовы линии сменяются яркими эмиссионными (рис. 124). Инфракрасная область солнечного спектра до 15 мк частично поглощается при прохождении сквозь земную атмосферу (рис. 125). Здесь расположены полосы молекулярного поглощения, принадлежащие в основном водяным парам, кислороду и углекислому газу. С Земли видны лишь некоторые участки солнечного спектра между этими полосами. Для длин волн, больших 15 мк, поглощение становится полным, и спектр Солнца доступен наблюдениям только с больших высот или внеатмосферными методами. Поглощение спектра Солнца молекулами воздуха продолжает оставаться сильным вплоть до области радиоволн длиной около 1 см, для которых земная атмосфера снова становится прозрачной. При этом обнаруживается, что в радиодиапазоне интенсивность солнечного спектра значительно больше, чем должна быть у тела с температурой 6000°. Убывание интенсивности радиоспектра Солнца с ростом длины волны в диапазоне метровых волн происходит так же, как и у абсолютно черного тела, имеющего температуру в миллион градусов. Другой важной особенностью радиоизлучения Солнца является его переменность, увеличивающаяся с ростом длины волны. Этим радиодиапазон существенно отличается от видимой области спектра, интенсивность которой исключительно постоянна. Подобной же переменностью обладает и рентгеновское излучение Солнца. Важнейшей особенностью солнечного спектра от длины волны около 1600 Е до инфракрасного диапазона является наличие темных фраунгоферовых линий поглощения. По длинам волн они в точности соответствуют линиям испускания разреженного светящегося газа. Появление их в поглощении в спектре солнечной атмосферы обусловлено значительно большей ее непрозрачностью к излучению в этих линиях, чем в соседнем непрерывном спектре. Тем самым в них мы наблюдаем излучение, исходящее от более наружных, а следовательно, и более холодных слоев. Дополнительное поглощение вызвано соответствующими атомами, которые возбуждаются за счет поглощенных квантов. Возбужденные атомы тут же переизлучают поглощенную энергию, причем одинаково по всем направлениям. Этот процесс называется атомным рассеянием. Он наиболее важен при образовании фраунгоферовых линий. Поэтому по их интенсивности можно судить о количестве рассеивающих атомов в атмосфере. Самая сильная линия солнечного спектра находится в далекой ультрафиолетовой области. Это – резонансная линия водорода La (Лайман-альфа) с длиной волны 1216 Е (рис. 124). В видимой области наиболее интенсивны резонансные линии H и К ионизованного кальция (см. рис. 123). После них по интенсивности идут первые линии бальмеровской серии водорода Нa , Hb , Нg , затем резонансные линии натрия D1 и D2 , линии магния, железа, титана и других элементов (см. рис. 123). Остальные многочисленные линии отождествляются со спектрами примерно 70 известных химических элементов из таблицы Д.И. Менделеева и хорошо изученных в лаборатории. Присутствие этих линий в спектре Солнца свидетельствует о наличии в солнечной атмосфере соответствующих элементов. Таким путем установлено присутствие на Солнце водорода, гелия, азота, углерода, кислорода, магния, натрия, кальция, железа и многих других элементов. Для количественного определения содержания различных химических элементов на Солнце необходимо применить метод, описанный в § 109. Результаты показывают, что вещество Солнца имеет тот же химический состав, что и другие космические объекты (кроме Земли и других планет), среднее содержание элементов в которых приведено в табл. 3. Преобладающим элементом на Солнце является водород. По числу атомов его примерно в 10 раз больше, чем всех остальных элементов, и на его долю приходится около 70% всей массы Солнца (водород – самый легкий элемент). Следующим по содержанию элементом является гелий – около 29% массы Солнца. На остальные элементы, вместе взятые, приходится чуть больше 1%. В некоторых случаях важно знать содержание элементов, обладающих определенными свойствами. Так, например, общее количество атомов металлов в атмосфере Солнца почти в 10 000 раз меньше, чем атомов водорода. § 118. Солнечная постоянная и ее измерение Для многих задач астрофизики и геофизики важно знать точную величину мощности солнечного излучения. Поток излучения от Солнца принято характеризовать так называемой солнечной постоянной, под которой понимают полное количество солнечной энергии, проходящей за 1 минуту через перпендикулярную к лучам площадку в 1 см2, расположенную на среднем расстоянии Земли от Солнца. Согласно большому количеству измерений, значение солнечной постоянной Q в настоящее время известно с точностью до 1 %: Q = 1,95 кал/см2Ч мин = 1,36 Ч106 эрг/см2Ч сек = 1360 вт/м2. Умножая эту величину на площадь сферы с радиусом в 1 а.е., получим полное количество энергии, излучаемой Солнцем по всем направлениям в единицу времени, т.е. его интегральную светимость, равную 3,8Ч1033 эрг/сек. Единица поверхности Солнца (1 см2 ) излучает 6,28Ч1010 эрг/см2Ч сек. На основании большого числа тщательных измерений можно сказать, что интегральная светимость Солнца отличается исключительным постоянством. Если и существуют слабые колебания солнечной постоянной, то они должны быть заведомо меньше 1 %. У поверхности Земли поток солнечного излучения уменьшается из-за поглощения и рассеяния в земной атмосфере и в среднем составляет 800-900 вт/м2. Измерение солнечной постоянной – очень сложная задача, требующая проведения целой серии тщательных наблюдений с приборами двух различных типов. Приборы первого типа называются пиргелиометрами. Их задача – измерить в абсолютных энергетических единицах полное количество солнечной энергии, падающей за определенное время на площадку известной величины. Однако показание пиргелиометра не дает еще непосредственного значения солнечной постоянной из-за того, что часть излучения Солнца поглощается при прохождении сквозь земную атмосферу. Чтобы учесть это поглощение, одновременно с измерениями на пиргелиометре проводят серию измерений распределения энергии в спектре Солнца на другом приборе – спектроболометре, обладающем одинаковой чувствительностью к лучам различных длин волн. Эти измерения проводятся для нескольких значений зенитных расстояний Солнца, когда его лучи проходят сквозь различную толщину слоя воздуха. Для каждой длины волны можно построить в виде графика зависимость интенсивности солнечного излучения от воздушной массы (рис. 126). Воздушной массой называется отношение оптической толщины слоя воздуха в данном направлении и в направлении на зенит. Из геометрических соображений (рис. 127) видно, что для плоскопараллельных слоев атмосферы воздушная масса пропорциональна секансу зенитного расстояния (sec z). Продолжая (экстраполируя) график, изображенный на рис. 126, до оси ординат (пунктирная линия), получаем интенсивность, какую имело бы излучение, если бы воздушная масса равнялась нулю. Это и есть искомое значение интенсивности, не искаженное поглощением в земной атмосфере. Выполняя эту операцию для всех участков спектра, можно записанное спектроболометром распределение энергии в спектре Солнца (рис. 128) исправить и учесть поглощение, вызванное прохождением сквозь земную атмосферу. В отличие от пиргелиометра, спектроболометр дает значения интенсивности только в относительных единицах. Поэтому описанным способом можно найти лишь отношение наблюдаемого и внеатмосферного значений интенсивности. Площадь, ограничиваемая кривой распределения энергии и осью абсцисс (см. рис. 128), пропорциональна полной энергии, излучаемой во всем спектре. Поэтому отношение площадей, ограниченных внеатмосферным и наблюдаемым распределением энергии, равно тому поправочному множителю, на который необходимо умножить показание пиргелиометра, чтобы получить истинное значение солнечной постоянной. К полученному результату следует прибавить небольшую поправку, учитывающую излучение в областях спектра, полностью поглощаемых земной атмосферой и, следовательно, не регистрируемых болометром. Это излучение расположено в ультрафиолетовой и инфракрасной областях спектра и может быть измерено по наблюдениям с ракет, искусственных спутников или баллонов. Заатмосферные наблюдения позволяют сразу получить истинное значение солнечной постоянной, так что необходимость применения описанной методики в последние годы постепенно отпадает. § 119. Температура внешних слоев Солнца В § 108 было показано, что по интенсивности излучения тела можно судить о температуре внешних его слоев. Рассмотренные методы определения температуры были проиллюстрированы на примере Солнца (см.рис. 91). Проанализируем результаты применения этих методов. Определяемая полным потоком излучения эффективная температура Солнца оказалась равной 5760°, в то время как положение максимума излучения в спектре Солнца соответствует температуре, определенной по закону Вина, около 6750°. Относительное распределение энергии в различных участках спектра позволяет найти цветовые температуры, значение которых весьма сильно меняется даже в пределах одной только видимой области. Так, например, в интервале длин волн 4700-5400 Е цветовая температура составляет 6500°, а рядом в области длин волн 4300-4700 Е – около 8000°. В еще более широких пределах меняется по спектру яркостная температура, которая на участке спектра 1000-2500 Е возрастает от 4500° до 5000°, в зеленых лучах (5500 Е) близка к 6400°, а в радиодиапазоне метровых волн достигает миллиона градусов! Для наглядности все перечисленные результаты сведены в табл. 4. Различие между данными, приведенными в табл. 4, имеет принципиальное значение и приводит к следующим важным выводам: 1. Излучение Солнца отличается от излучения абсолютно черного тела. В противном случае все значения температур, приведенные в табл. 4, были бы одинаковыми. 2. Температура солнечного вещества меняется с глубиной. Действительно, непрозрачность сильно нагретых газов неодинакова для различных длин волн. В ультрафиолетовых лучах поглощение больше, чем в видимых. Вместе с тем сильнее всего такие газы поглощают радиоволны. Поэтому радио-, ультрафиолетовое и видимое излучения соответственно относятся ко все более и более глубоким слоям Солнца. Учитывая наблюдаемую зависимость яркостной температуры от длины волны, получаем, что где-то вблизи видимой поверхности Солнца расположен слой, обладающий минимальной температурой (около 4500°), который можно наблюдать в далеких ультрафиолетовых лучах. Выше и ниже этого слоя температура быстро растет. 3. Из предыдущего следует, что большая часть солнечного вещества должна быть весьма сильно ионизована. Уже при температуре 5-6 тысяч градусов ионизуются атомы многих металлов, а при температуре выше 10-15 тысяч градусов ионизуется наиболее обильный на Солнце элемент – водород. Следовательно, солнечное вещество представляет собой плазму, т.е. газ, большинство атомов которого ионизовано. Лишь в тонком слое вблизи видимого края ионизация слабая и преобладает нейтральный водород. § 120. Внутреннее строение Солнца Одновременно с ростом температуры в более глубоких слоях Солнца должно возрастать давление, определяемое весом всех вышележащих слоев. Следовательно, плотность также будет увеличиваться. В каждой внутренней точке Солнца должно выполняться так называемое условие гидростатического равнове сия, означающее, что разность давлений, испытываемых каким-либо элементарным слоем (например, АВ на рис. 129, а), должна уравновешиваться гравитационным притяжением всех более глубоких слоев. Если давление на верхней границе слоя (A) обозначить через P1 , а на нижней – через Р2 , то равновесие будет иметь место при условии, что P2 ѕ P1 = r gH,(9.1) где r – средняя плотность слоя АВ, H – его толщина, a g – соответствующее значение ускорения силы тяжести. Среднюю плотность r можно положить равной среднему арифметическому от значений плотности r 1 и r 2 на верхней и нижней границах слоя АВ: (9.2) Используя уравнение газового состояния (7.9), получим (9.3) Подставляя это значение в формулу (9.1), имеем (9.4) Выражение имеет размерность длины и обладает важным физическим смыслом: если температура слоя постоянна, а толщина его составляет (9.5) то давление и плотность в пределах этого слоя меняется приблизительно в три раза. Действительно, подставляя (9.5) в (9.4), получаем Р2 = 3P1 .(9.6) Величина Н называется шкалой высоты, так как она показывает, на каком расстоянии происходит заметное изменение плотности. При T = 10 000° (m = 1/2 (ионизованный водород) и g = 2,7Ч104 см/сек2, что примерно соответствует условиям в наружных слоях Солнца, Н = 6Ч107 см, т.е. рост плотности в три раза происходит при продвижении вглубь на расстояние 600 км. Глубже температура растет, и возрастание плотности замедляется. Некоторое представление об условиях в недрах Солнца можно получить, если предположить что вещество в нем распределено равномерно. Очевидно, что свойства такого “однородного” Солнца должны быть близки к реальному случаю в средней точке, на глубине половины радиуса. При равномерном распределении масс плотность всюду равна уже известному нам среднему значению Давление в средней точке равно весу радиального столбика вещества сечением 1 см2 и высотой R¤/2 (см. рис. 129, 6), т.е. (9.7) В средней точке ускорение силы тяжести g, очевидно, равно (9.8) так как в сфере радиусом R¤/2 при однородном распределении масс заключена 1/8 часть массы всего Солнца. Следовательно, давление в средней точке Солнца равно (9.9) Зная давление и плотность, легко найти температуру Т из уравнения газового состояния: (9.10) Таким образом, мы получили следующие значения характеристик физических свойств “однородного Солнца” на глубине, равной половине радиуса R¤/2: r = 1,4 г/см2 (1,3 г/см2), Р = 6,6Ч1014 дин/см2 (6,1Ч1014 дин/см2), T = 2 800 000° (3 400 000°). В скобках приведены те же величины, рассчитанные точными методами, учитывающими неоднородное распределение масс в Солнце. Таким образом, для средней точки предположение о равномерном распределении масс приводит к правдоподобным результатам. В центре Солнца давление, плотность и температура должны быть еще больше. В табл.5 приведена так называемая модель внутреннего строения Солнца, т.е. зависимость его физических свойств от глубины. Таблица 5 Модель внутреннего строения Солнца Расстоя­ние от центраТемпе­ратураДавление Плот­ность R/RQT(°K)P(дин/см2)r(г/см3) 01,5 ·1072,2·1017150 0,21074,6·101636 0,53,4 ·1066,1·10141,3 0,81,3 ·1066,2·10120,035 0,9810510100,001 Из табл. 5 видно, что в недрах Солнца температура превышает 10 миллионов градусов, а давление – сотни миллиардов атмосфер (1 атм = 103 дин/см2). В этих условиях отдельные атомы движутся с огромными скоростями, достигающими, например, для водорода, сотен километров в секунду. Поскольку при этом плотность вещества очень велика, весьма часто происходят атомные столкновения. Некоторые из таких столкновений приводят к тесным сближениям атомных ядер, необходимым для возникновения ядерных реакций. В недрах Солнца существенную роль играют две ядерные реакции. В результате одной из них, схематически изображенной на рис. 130, из четырех атомов водорода образуется один атом гелия. На промежуточных стадиях реакции образуются ядра тяжелого водорода (дейтерия) и ядра изотопа Не3. Эта реакция называется протон-протонной. Другая реакция в условиях Солнца играет значительно меньшую роль. В конечном счете она также приводит к образованию ядра гелия из четырех протонов. Процесс сложнее и может протекать только при наличии углерода, ядра которого вступают в реакцию на первых ее этапах и выделяются на последних. Таким образом, углерод является катализатором, почему и вся реакция носит названия углеродного цикла. Исключительно важным является то обстоятельство, что масса ядра гелия почти на 1% меньше массы четырех протонов. Эта кажущаяся потеря массы называется дефектом массы и является причиной выделения в результате ядерных реакций большого количества энергии, так как согласно формуле Эйнштейна энергия, которая связана с массой т, равна Е = тЧ с2 Описанные ядерные реакции являются источником энергии, излучаемой Солнцем в мировое пространство. Так как наибольшие температуры и давление создаются в самых глубоких слоях Солнца, ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходит в самом центре Солнца. Только здесь наряду с протон-протонной реакцией большую роль играет углеродный цикл. По мере удаления от центра Солнца температура и давление становятся меньше, выделение энергии за счет углеродного цикла быстро прекращается и вплоть до расстояния около 0,2-0,3 радиуса от центра существенной остается только протон-протонная реакция. На расстоянии от центра больше 0,3 радиуса температура становится меньше 5 миллионов градусов, а давление ниже 10 миллиардов атмосфер. В этих условиях ядерные реакции происходить совсем не могут. Эти слои только передают наружу излучение, выделившееся на большей глубине в виде гамма-квантов, которые поглощаются и переизлучаются отдельными атомами. Существенно, что вместо каждого поглощенного кванта большой энергии атомы, как правило, излучают несколько квантов меньших энергий. Происходит это по следующей причине. Поглощая, атом ионизуется или сильно возбуждается и приобретает способность излучать. Однако возвращение электрона на исходный энергетический уровень происходит не сразу, а через промежуточные состояния, при переходах между которыми выделяются кванты меньших энергий. В результате этого происходит как бы “дробление” жестких квантов на менее энергичные. Поэтому вместо гамма-лучей излучаются рентгеновские, вместо рентгеновских – ультрафиолетовые, которые в свою очередь уже в наружных слоях дробятся на кванты видимых и тепловых лучей, окончательно излучаемых Солнцем. Та часть Солнца, в которой выделение энергии за счет ядерных реакций несущественно и происходит процесс переноса энергии путем поглощения излучения и последующего переизлучения, называется зоной лучистого равновесия. Она занимает область примерно от 0,3 до 0,7 r¤ от центра Солнца. Выше этого уровня в переносе энергии начинает принимать участие само вещество, и непосредственно под наблюдаемыми внешними слоями Солнца, на протяжении около 0,3 его радиуса, образуется конвективная зона, в которой энергия переносится конвекцией. Наконец, самые внешние слои Солнца, излучение которых можно наблюдать, называются солнечной атмосферой; в основном она состоит из трех слоев, называемых фотосферой, хромосферой и короной. Они будут рассмотрены в следующих параграфах. В целом описанная структура Солнца изображена на рис. 131. Рис. 131. Схематический разрез Солнца и его атмосферы § 121. Фотосфера Фотосферой называется основная часть солнечной атмосферы, в которой образуется видимое излучение, имеющее непрерывный спектр. Таким образом, она излучает практически всю приходящую к нам солнечную энергию. Фотосфера видна при непосредственном наблюдении Солнца в белом свете в виде кажущейся его “поверхности”. Первое, что бросается в глаза во время таких наблюдений, – плавное потемнение солнечного диска к краю. По мере удаления от центра яркость убывает все быстрее и быстрее, особенно на самом краю, который оказывается очень резким. На рис. 132 изображено изменение яркости диска Солнца с расстоянием от центра при наблюдении в различных лучах. Потемнение диска Солнца к краю объясняется тем, что в фотосфере происходит рост температуры с глубиной. Различные точки солнечного диска обычно характеризуют углом 9, который составляет луч зрения с нормалью к поверхности Солнца в рассматриваемом месте (рис. 133). В центре диска этот угол равен нулю и луч зрения совпадает с радиусом Солнца. На краю q = 90°, и луч зрения скользит вдоль касательной к слоям Солнца. Как было показано в § 105, большая часть излучения некоторого слоя газа исходит от уровня, находящегося на оптической глубине t « 1. Когда луч зрения пересекает слои фотосферы под большим углом 9, оптическая глубина t = 1 достигается в более внешних слоях, где температура меньше. Вследствие этого интенсивность излучения от краев солнечного диска меньше интенсивности излучения его середины (рис. 134). Точные измерения распределения яркости по диску Солнца позволяют рассчитать изменение с глубиной всех важнейших характеристик фотосферы. Такой расчет называется построением ее модели. Не вдаваясь в детали, изложим основную его идею. Определение зависимости температуры от глубины. Уменьшение яркости солнечного диска к краю в первом приближении пропорционально cos q и может быть представлено эмпирической формулой I(q ) = I0(1 – u + u cos q ),(9.11) где I(q ) – яркость в точке, в которой луч зрения со

1 ... 55 56 57 58 59 60 61 62 63 ... 68
Перейти на страницу:
На этой странице вы можете бесплатно скачать Курс общей астрономии - П.И.Бакулин торрент бесплатно.
Комментарии