Читаем без скачивания Теория струн и скрытые измерения Вселенной - Шинтан Яу
Шрифт:
Интервал:
Закладка:
Действительно ли тот факт, что теория струн, согласно AdS/CFT, может быть эквивалентной квантовой теории поля — теории, для которой мы получили чрезвычайно точные экспериментальные подтверждения, — делает теорию струн верной? Малдасена так не считает, хотя некоторые струнные теоретики пытались доказать справедливость этого утверждения. Строминджер тоже так не считает, но работы по черным дырам и AdS/CFT, выросшие из этой идеи, заставляют его думать, что теория струн находится на верном пути. Строминджер говорит, что идеи, появившиеся благодаря парадоксу черной дыры и гипотезе Малдасены, — кажутся доводами в пользу неотвратимости теории струн. Вы не можете от нее убежать. Она ударяет вам в голову, где бы вы ни остановились.[153]
Девятая глава
Добро пожаловать в реальный мир
В книге «Удивительный волшебник из Страны Оз» при встрече с волшебницей Глиндой Дороти подробно рассказывает историю о том, «как ураган перенес ее в страну Оз, как она нашла друзей и какие удивительные приключения выпали на ее долю. «Но сейчас, — добавляет она, — мое самое большое желание — вернуться в Канзас».[154]
Когда вы будете слушать этот рассказ, в котором часто будут появляться «Добрый доктор» Виттен и другие и из которого вы узнаете об удивительных приключениях в Стране Калаби-Яу — с ее скрытыми измерениями, зеркальными партнерами, суперсимметрией и исчезающими первыми классами Черна, то некоторым из вас, как Дороти, вероятно, захочется вернуться к более привычной обстановке. Вопрос, как всегда, заключается в следующем: можем ли мы получить одно из другого? Может ли сочетание теории струн и многообразий Калаби-Яу раскрыть секреты скрытой и многомерной области — теоретического эквивалента страны Оз, которую можно только представить, но нельзя пощупать, и в то же время рассказать нам нечто новое о более конкретной физической реальности, так сказать, Канзасе?
«Можно создавать физические теории, которые интересны математикам, но в конечном счете, мне хотелось бы понять реальный мир», — говорит Фолкер Браун, физик из Дублинского института перспективных исследований.[155] В нашей попытке связать теорию струн и многообразия Калаби-Яу с реальным миром очевидной точкой сравнения является физика элементарных частиц.
Стандартная модель, которая описывает частицы материи и частицы — переносчики взаимодействий, движущиеся между ними, является одной из самых успешных теорий всех времен, но она не является учением о природе по ряду отношений. Во-первых, эта модель имеет около двадцати свободных параметров, таких как массы электронов и кварков, которые модель не способна предсказать. Эти величины необходимо вводить «вручную», что ставит многих ученых-теоретиков в тупик. Мы не знаем, откуда берутся эти числа, и ни одно из них, похоже, не находит логического математического обоснования. Струнные теоретики надеются найти математическое обоснование с единственным свободным параметром, кроме напряжения струн или линейной плотности энергии, который был бы связан с геометрией пространства. Силы и частицы при выборе геометрии должны быть полностью зафиксированы. Вышеупомянутая статья 1985 года Филиппа Канделаса, Гари Горовица, Эндрю Строминджера и Эдварда Виттена (см. шестую главу) «показывает, что можно свести все ключевые моменты воедино и получить мир, который выглядит, по крайней мере, в первом приближении, как Стандартная модель», — утверждает Канделас. — «Тот факт, что вы можете это сделать в теории, которая включает гравитацию, вызвал большой интерес к теории струн».[156] Один из успехов модели Канделаса и других ученых заключается в том, что она вводит понятие хиральных фермионов — особенности Стандартной модели, в соответствии с которой каждая материальная частица обладает своего рода «доминированием одной из рук»: леворукая версия отличается от ее праворукого зеркального отображения. Как мы видели ранее, эта модель также подразделяет элементарные частицы на четыре семейства, или поколения, а не на три, как Стандартная модель. Хотя эти числа и отличаются на единицу, Канделас утверждает, что «главное было показать, что можно получить различные поколения, то есть повторяемую структуру, наблюдаемую в Стандартной модели».[157] Строминджер придерживался тех же оптимистических взглядов, называя новаторские компактификации Калаби-Яу «важным скачком от базовых принципов теории струн до чего-то близкого к миру, в котором мы живем. Это похоже на игру в баскетбол, когда мяч, брошенный игроком с противоположного конца поля, попадает в корзину, — отмечает он. — Мы вплотную приблизились к пространству всех явлений, которые, возможно, могли бы произойти во Вселенной. Но нам хочется большего: нам хочется найти нечто не просто более-менее верное, а безусловно верное».[158] Примерно через год Брайан Грин с коллегами сделали шаг вперед, создав модель, которая давала три поколения, так необходимые для наших теорий, хиральные фермионы, правильное значение суперсимметрии, которое мы обозначаем, как N = 1, нейтрино с некоторой массой (что хорошо), но не слишком большой (что еще лучше); в ней также получались поля, связанные с взаимодействиями Стандартной модели (сильным, слабым и электромагнитным). Возможно, самым большим недостатком этой модели являлось наличие некоторых нежелательных дополнительных частиц, которые не были частью Стандартной модели и от которых следовало избавиться тем или иным способом. Что касается плюсов, то я был поражен простотой метода: фактически все, что надо было сделать авторам модели, — это «выбрать» многообразие Калаби-Яу, причем именно то, которое подведет нас вплотную к получению Стандартной модели. Хотя за прошедшие десятилетия наблюдается значительный прогресс в ряде областей, теория струн и струнные теоретики все еще до конца не поняли Стандартную модель. Даже с высоты наших сегодняшних познаний мы не уверены, может ли теория струн воспроизвести Стандартную модель.
В настоящее время, несмотря на сложность задачи, ее приверженцы надеются, что теория струн не только впишется, но фактически выйдет за рамки Стандартной модели, которая находится там, куда, по их мнению, мы должны прийти. Мы уже знаем, что Стандартная модель не является последним словом в физике. За последнее десятилетие ее неоднократно изменяли или расширяли на основе экспериментальных данных, например, в 1998 году обнаружили, что нейтрино, которые считались безмассовыми, на самом деле обладают некоторой массой. Более того, мы столкнулись с темной материей и темной энергией — двумя таинственными формами, составляющими примерно 96% Вселенной, о которых Стандартная модель ничего не сообщает. Мы ожидаем новых открытий, объясняющих это: или будут обнаружены суперсимметричные частицы — возможные кандидаты на роль темной материи, или будет обнаружено что-то совершенно неожиданное, например с помощью Большого адронного коллайдера, разгоняющего встречные пучки протонов с высокими энергиями. И хотя Канделас с сотрудниками и Грин с сотрудниками не смогли воспроизвести Стандартную модель, их компактификации опередили ее, по крайней мере в одном аспекте, так как они открыли дорогу к достижению минимальной суперсимметричной Стандартной модели (МССМ). МССМ является расширенной версией традиционной модели, куда ввели суперсимметрию, что означает включение всех суперсимметричных партнеров, которые не включены в саму Стандартную модель. Последующие успехи реализации Стандартной модели на основе теории струн, которые мы обсудим позже, также включают суперсимметрию.
Тем, кто считает, что суперсимметрия должна стать частью теории о природе, а в этот список, вероятно, войдут (хотя он и не окончательный) большинство струнных теоретиков, конечно, одной Стандартной модели недостаточно. Существует другой крупный недостаток, который неоднократно будет упоминаться на страницах этой книги, а именно: Стандартная модель, теория физики элементарных частиц, ничего не говорит о гравитации, поэтому она никогда не сможет дать полное описание Вселенной. Гравитация выпадает из этой модели по двум причинам.
♦ Во-первых, она намного слабее, чем другие силы — сильные, слабые и электромагнитные, и является совершенно несущественной при изучении взаимодействий частиц при малых расстояниях. Сила гравитационного взаимодействия между двумя протонами примерно в 1035 раз слабее, чем электромагнитное взаимодействие. Например, магнит размером с пуговицу способен за счет электромагнитного взаимодействия оторвать от земли канцелярскую скрепку, преодолевая при этом силу гравитации всей планеты Земля;
♦ Во-вторых, несмотря на широкое обсуждение, пока никто не знает, как связать гравитацию, которая описывается общей теорией относительности, и другие силы в одну цельную теорию. Если теории струн удастся воспроизвести Стандартную модель, введя в нее гравитацию, то мы будем намного ближе к полной теории природы. В таком случае мы получим не только Стандартную модель с гравитацией, но и суперсимметричную Стандартную модель с гравитацией.