Читаем без скачивания Основы кибернетики предприятия - Джей Форрестер
Шрифт:
Интервал:
Закладка:
Можно проанализировать другой частный случай. Предположим, что входящих заказов RRR не было вовсе (см. рис. 13-4). Затем появляется непредвиденная партия заказов, после чего темп заказов снова становится равным нулю; здесь мы наблюдаем так называемую «импульсную» реакцию, которая соответствует поведению запаздывания первого порядка. Мы видим, что объем невыполненных заказов резко возрос до величины, соответствующей полученной партии заказов; темп отгрузки товаров возрастает до максимума и затем снижается по мере того, как снижается задолженность по невыполненным заказам. Это можно объяснить тем, что имеются изделия, заказы на которые легко выполнимы, и по этим заказам тотчас же производятся необходимые операции. Однако мы можем получить более правильные результаты, если введем первоначальное запаздывание отгрузки; более равномерное увеличение темпа отгрузки в рассматриваемом с целью исследования модели случае представляется более реальным. Если это так, то процесс выполнения заказов может быть разделен на две или большее число стадий. Одно уравнение, как приведенное выше, могло бы отвечать запаздываниям в условиях отсутствия товарных запасов. В предшествующем случае запаздывание третьего порядка в потоке входящих заказов RRR могло бы отражать запаздывание в системе, связанное с оформлением заказа. Анализируя подобные альтернативы, можно определить их воздействие на поведение системы. Основываясь на накопленном ранее опыте, допустим, что такой детальный анализ для достижения поставленных здесь целей не требуется.
Рис. 13-4. Реакция темпа отгрузки товаров покупателям SSR и уровня невыполненных заказов UOR на импульсный ввод заказов RRR.По приведенному выше уравнению нельзя судить с достаточной уверенностью о том, что темп отгрузки SSR в течение начального интервала времени KL будет не больше, чем это позволяют оставшиеся запасы товаров. Как будет отмечено позже при рассмотрении запаздывания DFR.K, величина этого запаздывания будет возрастать по мере сокращения запасов, в результате чего темп отгрузки будет иметь тенденцию к понижению. Все же для того, чтобы полностью исключить возможность появления отрицательных запасов, в последующих уравнениях будут специально введены две вспомогательные переменные.
В последующих трех уравнениях показан простейший прием, применяемый при построении модели. Эти уравнения были введены на ранней стадии построения данной модели и оставлены здесь как основа для обсуждения вопросов, затрагиваемых ниже (см. сноску на этой странице). Предыдущее уравнение мы перепишем, используя вместо темпа поставок SSR вспомогательную переменную STR.
,
13-3, Aгде
STR — проверяемый темп розничной отгрузки (единицы в неделю);
UOR — заказы, не выполненные розничным звеном (единицы);
DFR — запаздывание выполнения заказов розничным звеном (недели).
Это вспомогательное уравнение, a STR — вспомогательная переменная; она вычисляется сразу после определения вспомогательной переменной DFR. Как уже отмечалось в разделе 6.4, вычисление вспомогательных переменных часто требует определенной последовательности.
Прежде чем признать, что предполагаемый темп поставки STR является истинным значением темпа поставки SSR, сопоставим значение STR с предельным темпом отгрузки, при котором за время между решениями уравнений используется весь имеющийся объем товарных запасов. Этот темп определяется следующим уравнением:
,
13-4, Aгде
NIR — предельный темп розничной отгрузки
(единицы в неделю);
IAR — фактический запас в розничном звене (единицы);
DT — интервал времени между решениями уравнений (недели).
Мы теперь готовы к тому, чтобы написать наше уравнение для темпа поставок:
,
13-5, Rгде
SSR — розничная отгрузка (единицы в неделю);
NIR — предельный темп розничной отгрузки (единицы в неделю);
STR — проверяемый темп розничной отгрузки (единицы в неделю).
Уравнение 13-5 определяет темп розничной отгрузки, который будет иметь место в течение предстоящего интервала времени KL[70]. В нем утверждается, что если предельный темп NIR.K, определяемый из уравнения 13-4, больше или равен желаемому темпу отгрузки STR.K, определяемому по уравнению 13-3, то следует принять темп STR.K. Если NIR.K меньше, чем STR.K, то за темп поставки принимается NIR. В обычных обстоятельствах, когда запасы не снижаются до нуля, темп поставок определяется уравнением 13-3.
Взаимосвязь уравнений 13-3, 13-4 и 13-5 представлена на диаграмме потоков (рис. 13-5).
Рис. 13-5. Отражение выполнения заказов в диаграмме потоков розничной торговли.Прежде чем перейти к составлению уравнения взаимосвязи между запасами и переменным запаздыванием DFR, используемым при вычислении темпа отгрузки товаров, необходимо более подробно остановиться на природе рассматриваемых запасов. Если мы рассматриваем один вид товара на одном складе, то ясно, что заказы могут выполняться до тех пор, пока не истощатся все имеющиеся запасы. Это показано на рис. 13-6, где все входящие заказы могут выполняться, пока на складе есть запасы. Возможность выполнения заказов сразу падает до нуля, как только истощаются запасы товаров.
Рис. 13-6. Выполнение заказов на один вид товара с одного склада.Совсем другое положение складывается, когда один вид товара имеется в наличии на нескольких складах или множество разных товаров находится на одном складе и, уж конечно, если речь идет о множестве различных товаров на многих складах. В любом из этих случаев мы можем ожидать, что запасы одних товаров будут исчерпаны раньше других на некоторых складах и что наша суммарная возможность выполнять заказы будет постепенно снижаться по мере того, как снизится общий объем запасов всех видов товаров. Это показано на рис. 13-7. Мы будем рассматривать в нашем примере именно этот случай, поскольку имеется в виду производство различных видов товаров и их розничная продажа по всей стране.