Категории
Самые читаемые

Читаем без скачивания Космические двигатели будущего - Александр Дмитриев

Читать онлайн Космические двигатели будущего - Александр Дмитриев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 15
Перейти на страницу:

Рис. 9. Одна из возможных конструкций солнечного паруса — «солнечный гироскоп».

По предварительным оценкам, для реализуемости проекта толщина пленки, образующей парус, должна составлять около 0,0025 мм, а удельная масса примерно 3 г/м2. Поэтому главная трудность на пути реализации проекта — выбор материала пленки.

Кроме упомянутого полета к комете Галлея, в качестве возможных операций с применением солнечного паруса рассматриваются перемещения крупных грузов между низкими и геостационарными орбитами и доставка марсианского грунта на Землю. Использование же солнечного паруса для полетов к внешним планетам считается нецелесообразным.

Лазерные реактивные двигатели. Принцип действия лазерных реактивных двигателей основан на хорошо известном факте — возможности испарения материала под воздействием лазерного излучения. Испарение происходит быстро и приводит к образованию сверхзвуковой струи, когда поток энергии на поверхности вещества имеет высокую плотность. При еще более высоких потоках пар может быть ионизован, давая очень высокий удельный импульс. Количество движения струи приводит к созданию тяги точно так же, как в случае обычного реактивного двигателя. Идея использования энергии мощных наземных лазеров для вывода на орбиту ИСЗ была высказана А. Канторовицем в 1971–1972 гг.

В принципе лазерный двигатель сочетает в себе очень высокий удельный импульс, характерный для ядерных и электрических двигателей с большим отношением тяги к массе, с надежностью, свойственной двигателям на химическом топливе. Высоких значений удельного импульса можно достичь, так как в результате поглощения излучения рабочим телом образуется плазма с высокой температурой. Большое же отношение массы полезного груза к массе ракеты обеспечивается тем, что источник энергии находится на Земле.

Реализация этих основных преимуществ зависит, конечно, от решения двух проблем. Во-первых, должна быть обеспечена передача мощного лазерного луча с очень малым углом расходимости, а, во-вторых, требуется создание технологически и экономически доступных больших лазеров и источников их питания.

В настоящее время рассмотрены несколько методов получения тяги на основе использования лазерного излучения. Один из них, например, заключается в быстром испарении твердого топлива, которое поглощает излучение, вследствие чего образуется струя горячего пара. Если к тому же пар поглощает часть энергии лазерного излучения, то можно получить температуры 5000 — 12 000 К. Внутренняя поверхность сопла ракеты в этом случае представляет собой параболический отражатель, так что сопло одновременно служит зеркалом для лазерного излучения и соплом для истекающих газов.

Параболический отражатель принимает лазерный луч с плотностью мощности, меньшей, чем максимальный поток, проходящий без искажений через атмосферу, и фокусирует его на расположенный в фокусе стержень твердого топлива. Таким образом, испаряющееся топливо проходит через область лазерного излучения с высокой интенсивностью (107 — 109 Вт/см2) и нагревается до высоких температур. Затем газ, нагретый до высокой температуры, расширяется, и его тепловая энергия преобразуется в кинетическую. Подобная система дает более высокую удельную тягу, чем простая испарительная система.

Для выведения ракет с полезным грузом, не превышающим 1 т, на геоцентрическую орбиту в одном из проектов предлагается использовать лазеры на углекислом газе, работающие в импульсном режиме. Такие лазеры позволяют получать импульсы света с расходимостью пучка менее 0,2" и длительностью в несколько миллисекунд.

По предварительным оценкам, стоимость выведения полезной нагрузки массой 1 кг на околоземную орбиту при помощи наземной лазерной установки составит около 50 долл. Основной проблемой при проектировании подобных ракетных систем является проблема наиболее эффективного преобразования энергии лазерного луча в кинетическую энергию движения ракеты, достаточную для выведения последней на околоземную орбиту. Полная энергия, поступающая в двигатель за время выведения ракеты на орбиту, пропорциональна произведению мощности источника на время выведения. Для одной и той же массы полезной нагрузки она почти не зависит от времени выведения. Это означает, что, увеличивая время выведения, можно снизить мощность источника и, наоборот, увеличивая мощность источника, — уменьшить время вывода ракеты на орбиту.

Минимальная мощность лазера может быть порядка 200–300 МВт, если ракета разгоняется в течение длительного промежутка времени, но это ведет и к увеличению зоны разгона — максимального расстояния, которое должен преодолеть лазерный луч, чтобы попасть в приемное устройство ракеты. Для сохранения высокой эффективности передачи энергии при увеличении расстояния необходимо, как об этом уже говорилось, либо уменьшить расходимость луча, либо увеличить размеры приемного устройства на ракете. Первый вариант требует улучшенной оптики лазера, второй приводит к увеличению лобового сопротивления ракеты. Примерная зависимость мощности лазера от длины зоны разгона для системы выведения, обеспечивающей доставку на орбиту 1 т полезного груза, приведена на рис. 10.

Рис 10. Примерная зависимость характеристической мощности лазера от длины разгона при выводе полезного груза массой 1 т

Особенностью описываемого проекта является использование энергии химической реакции вместе с энергией лазерного излучения для разогрева рабочего тела. Цикл работы двигателя начинается с воспламенения топлива и подачи светового импульса. Световой импульс производит дополнительный разогрев рабочего тела, в результате чего образуется плазма с температурой около 20 000 К, расширяющая и выталкивающая газ из сопла двигателя. После выхода газа из сопла подается новый световой импульс, топливо воспламеняется, и весь цикл повторяется снова.

Длительность тяги двигателя зависит от длительности светового импульса. Так, например, для создания тяги в течение 800 с (давление газов на основание ракеты достигает 3 МПа) необходимо подавать световой импульс с плотностью потока энергии 2 · 107 Вт/см2 и длительностью 10–6 с, при этом скорость по окончании разгона достигнет 8 км/с. Поскольку тяга всегда перпендикулярна срезу сопла двигателя, направление луча лазера не обязательно должно совпадать с направлением продольной оси ракеты.

Еще один метод создания тяги, использующий поглощение лазерного излучения пригоден для разгона космического аппарата на атмосферном участке траектории. Он был предложен группой исследователей из ФИАНа под руководством А. М. Прохорова в 1973 г. В этом варианте излучение без существенного поглощения проходит через атмосферу и попадает на параболическую отражающую поверхность, которая находится в хвостовой части летательного аппарата и жестко с ним связана. Интенсивность излучения в фокальной области этой поверхности должна превышать порог, при котором происходит электрический пробой находящегося там воздуха. Тяга возникает без использования какого-либо другого топлива, кроме атмосферного воздуха. Если между импульсами лазера обеспечивается смена воздуха, то двигатель работает как лазерный пульсирующий воздушно-реактивный двигатель.

Рис. 11. Лазерный пульсирующий ВРД: 1 — параболическая оболочка с полированной внутренней поверхностью, 2 — фокус параболоида, 3 — пробой воздуха, 4 — светодетонационная волна, 5 — лазерный луч

Схематическое представление о лазерном пульсирующем воздушно-реактивном двигателе дает рис. 11. Лазерный луч, падающий на полированную внутреннюю поверхность, фокусируется с образованием потока высокой интенсивности. Следующий за этим пробой воздуха возбуждает ударную волну, которая распространяется по направлению к выходному срезу сопла. Причем все высокое давление газа за ней преобразуется в силу, действующую на стенки сопла, т. е. тягу.

Лазерный МГД-двигатель. В рамках работ по анализу перспективных двигателей для одноступенчатого транспортного корабля в США проведены исследования по созданию МГД-двигателя с использованием лазера. Основное преимущество такого двигателя, по сравнению с лазерным воздушно-реактивным двигателем, заключается в том, что за счет ускорения рабочего тела с помощью электродинамических сил предоставляется возможность получения высоких скоростей истечения реактивной струи. В качестве рабочего тела используется плазма, получаемая из атмосферного воздуха; источник энергии — лазерные генераторы орбитальных или наземных станций, вдоль которых движется транспортный-космический корабль.

1 ... 5 6 7 8 9 10 11 12 13 ... 15
Перейти на страницу:
На этой странице вы можете бесплатно скачать Космические двигатели будущего - Александр Дмитриев торрент бесплатно.
Комментарии