Читаем без скачивания Кибернетика или управление и связь в животном и машине - Норберт Винер
Шрифт:
Интервал:
Закладка:
Обе теории предсказания — линейного и нелинейного — предполагают определенные критерии качества предсказания. Простейший, хотя отнюдь и не единственный пригодный, — это критерий наименьшей среднеквадратической ошибки. Он применяется здесь в частном виде с функционалами броунова движения, использованными мною для синтеза нелинейных устройств, поскольку различные члены моего разложения имеют некоторые свойства ортогональности. Эти свойства гарантируют, что частичная сумма конечного числа членов дает наилучшую имитацию рассматриваемого устройства, какая только может быть получена с этими членами при указанном критерии. Метод Габора также основан на среднеквадратическом критерии ошибки, но в более общем виде, пригодном для временных рядов, полученных из опыта.
Понятие обучающихся машин можно распространить на гораздо более широкую область, нежели предсказывающие устройства, фильтры и тому подобные приборы. Особенно важно оно для изучения и конструирования машин, играющих в игры со встречными интересами, как, например, в шашки. Здесь интересную работу выполнили Сэмьюэл[87] и Ватанабе[88] в лабораториях фирмы «Интернешнел Бизнес Машине». Как и в случае фильтров и предсказывающих устройств, здесь подбираются какие-то функции временных рядов, на которые можно разложить функции гораздо более широкого класса. Выбранные функции могут включать численные оценки существенных величин, от которых зависит успех игры. Например, они включают число фигур с обеих сторон, господство над пространством, подвижность и т. д. В начале работы машины этим факторам даются пробные [c.37] веса, и машина выбирает допустимый ход, имеющий наибольший общий вес. Эти действия машина проводит по жесткой программе, без какого-либо оборудования.
Но время от времени машина переходит к другой задаче. Она пробует разложить функцию, равную 1 при выигрыше, 0 при проигрыше и, положим, 1/2 при ничьей, по различным функциям, выражающим факторы, которые машина способна учитывать. Тем самым она заново определяет вес этих факторов, чтобы вести затем более сложную игру. Некоторые свойства таких машин будут рассмотрены в гл. IX, здесь же я должен сказать, что применение подобных оценок позволяет машине обыграть своего программиста после 10—20 часов обучения и тренировки. Я также упомяну в этой главе о некоторых аналогичных машинах, предназначенных для доказательства геометрических теорем и для имитации — в ограниченной степени — логики индукции.
Вся эта работа составляет часть теории и практики двойного программирования[89], которые усиленно изучались в лаборатории электронных систем Массачусетсского технологического института. Там было установлено, что, если не применять какое-либо обучающееся устройство такого типа, программирование машины с жесткой схемой представляет собой очень трудную задачу и что существует настоятельная необходимость в устройствах для программирования этого программирования.
Но понятие обучающихся машин применимо не только к тем машинам, которые мы создаем сами, но и к тем живым машинам, которые мы называем «животными», и это бросает новый свет на биологическую кибернетику. Здесь я хочу выделить среди многих современных исследований книгу супругов Стэнли-Джонсов о кибернетике (отметим орфографию) живых систем[90]. [c.38] В этой книге авторы много места отводят обратным связям, поддерживающим рабочий уровень нервной системы, а также другим обратным связям, отвечающим на частные раздражения. Поскольку соединение уровня системы с частными реакциями является в значительной степени мультипликативным, оно также нелинейно и подчиняется соображениям, подобным изложенным выше.
Эта область исследований сейчас усиленно развивается и, я надеюсь, в ближайшем будущем должна развиваться гораздо больше.
Машины с памятью и самовоспроизводящиеся машины, которые я до сих пор описывал, основаны в большой мере, хотя и не полностью, на устройствах с весьма высокой специализацией, которые можно назвать копировальными устройствами. Физиологические варианты того же процесса должны больше соответствовать особым методам, свойственным живым организмам, где копирование заменяется менее специализированным процессом самоорганизации системы. Гл. Х настоящей книги посвящена одному примеру процесса самоорганизации, а именно процессу, посредством которого образуются узкие, весьма специфические частоты в мозговых волнах. Она оказывается, таким образом, в значительной мере физиологическим двойником предыдущей главы, в которой аналогичные процессы рассматриваются на более близкой к копированию основе.
Обнаружение таких резких частот в мозговых волнах и теории, предложенные мною для объяснения того, как они возникают, что они могут сделать и как их можно использовать в медицине, представляют, по моему мнению, новое существенное направление в физиологии. Подобные же идеи можно применить для объяснения многих других физиологических явлений, и они могут внести значительный вклад в изучение основ явлений жизни. В этом направлении я даю скорее программу, чем законченное исследование, но программу, на которую я возлагаю большие надежды.
В мои намерения ни в первом издании книги, ни в настоящем не входило дать конспект всего, что было сделано в кибернетике. Это не соответствует ни моим интересам, ни моим возможностям. Цель моя — изложить и дополнить свои мысли по этому предмету и [c.39] представить некоторые идеи и философские соображения, которые побудили меня начать работу в данной области и продолжали интересовать меня при ее дальнейшем развитии. Таким образом, это книга весьма личного характера, уделяющая много места исследованиям, которыми я сам интересовался, и относительно мало — исследованиям, в которых я сам не участвовал.
При пересмотре книги я получил ценную помощь от многих. В частности, я должен выразить признательность за сотрудничество мисс Констанции Д. Бойд из издательства Массачусетсского технологического института, д-ру Сикао Икехара из Токийского технологического института, д-ру Ю.В. Ли с электротехнического факультета Массачусетсского технологического института и д-ру Гордону Рейсбеку из Белловских телефонных лабораторий. Кроме того, при написании новых глав, и в частности в расчетах для гл. X, в которой рассматриваются самоорганизующиеся системы, обнаруживаемые при изучении энцефалограмм, я должен отметить помощь со стороны моих учеников Джона Котелли и Чарльза Э. Робинсона и особенно со стороны д-ра Джона С. Барлоу из Главной Массачусетсской больницы. Указатель составил Джеймс У. Дэйвис.
Без постоянной заботы и преданности всех этих лиц у меня не хватило бы мужества и прилежания, чтобы выпустить новое исправленное издание.
Норберт Винер
Кембридж, Массачусетс,
март 1961 г. [c.40]
Часть I.
Первоначальное издание
1948 г.
Введение
Эта книга представляет итог более чем десятилетних исследований, предпринятых совместно с д-ром Артуро Розенблютом, работавшим тогда в Гарвардской медицинской школе, а ныне перешедшим в Национальный институт кардиологии в Мексике. В то время д-р Розенблют, коллега и сотрудник покойного д-ра Уолтера Б. Кеннона, ежемесячно устраивал дискуссии о научном методе. В этих дискуссиях участвовали главным образом молодые ученые Гарвардской медицинской школы. Мы собирались на обед за круглым столом в Вандербилт-Холле. Беседа была живой и непринужденной. Здесь было неподходящее место для игры в амбицию, да это и не поощрялось. После обеда кто-нибудь из нашей группы или из гостей делал доклады на какую-либо научную тему, причем обычно в этих докладах вопросы методологии ставились на первое или хотя бы на почетное место. На докладчика обрушивалась резкая критика, благожелательная, но беспощадная. Она была великолепным лекарством от незрелых мыслей, недостаточной самокритичности, излишней самоуверенности и напыщенности. Кто не мог выдержать испытание, не возвращался в нашу среду, но многие из нас, бывших завсегдатаев этих встреч, чувствуют, что эти встречи были постоянным существенным вкладом в наше научное развитие.
На этих собраниях присутствовали не только врачи и ученые-медики. К постоянным и активным участникам наших споров принадлежал д-р Мануэль Сандоваль Вальярта, профессор физики Массачусетсского технологического института, один из самых первых моих [c.43] студентов в те годы, когда я пришел в МТИ после I мировой воины. Как и д-р Розенблют, д-р Вальярта был мексиканец. Он имел обыкновение приводить на эти встречи своих коллег по институту. На одну из встреч он привел и меня; так я встретился впервые с д-ром Розенблютом. Я давно интересовался методологией науки и в 1911-1913 гг. принимал участие в семинаре по этим вопросам, который вел Джосайя Ройс в Гарвардском университете. Чувствовалось, что на подобных собраниях необходимо присутствие человека, способного критически рассматривать математические вопросы. Поэтому я был активным членом группы до того момента, пока д-р Розенблют не был вызван в Мексику в 1944 г. и пока общий беспорядок, связанный с войной, не положил конец этим собраниям.