Читаем без скачивания Теория относительности для миллионов - Мартин Гарднер
Шрифт:
Интервал:
Закладка:
«Взгляды на пространство и время, которые я хочу изложить перед вами, развивались на основе экспериментальной физики, и в этом их сила. Они радикальны. Отныне пространство само по себе и время само по себе обратились в простые тени, и только какое-то единство их обоих сохранит независимую реальность».
Отсюда следует понять, что пространственно-временная структура, четырехмерная структура космического корабля, остается такой же твердой и неизменной, как в классической физике. В этом состоит существенное различие между отброшенной теорией сокращения Лоренца и теорией сокращения Эйнштейна. Для Лоренца сокращение представляло собой реальное сокращение трехмерного предмета. Для Эйнштейна «реальный» предмет — это четырехмерный предмет, который никак не меняется. Его трехмерная проекция на пространство и его одномерная проекция на время могут изменяться, но четырехмерный корабль в пространстве — времени остается неизменным.
Это другой пример того, как теория относительности вводит новые абсолюты. Четырехмерная форма твердого тела абсолютна и неизменна. Подобно этому, четырехмерный интервал между двумя событиями в пространстве—времени есть абсолютный интервал. Наблюдатели, движущиеся с большими скоростями в разных состояниях относительного движения, могут расходиться во мнении о том, насколько удаленными друг от друга в пространстве представляются им два события и как они разделены во времени, но все наблюдатели независимо от их движения, будут едины в том, насколько разделены эти два события в пространстве — времени.
В классической физике тело, если на него не действует сила, движется в пространстве вдоль прямой с постоянной скоростью. Например, планета двигалась бы по прямой, если бы ее не удерживала сила притяжения к Солнцу. Таким образом. Солнце заставляет планету двигаться по эллиптической орбите.
В теории относительности тело, пока на него не действуют силы, также движется по прямой с постоянной скоростью, но эта прямая должна рассматриваться как линия в пространстве — времени, а не в пространстве. Все это справедливо даже при наличии тяготения. Дело в том, что тяготение, согласно Эйнштейну, вовсе не является силой! Солнце не «притягивает» планеты. Земля не «притягивает» вниз падающее яблоко. Просто большое материальное тело, такое, как Солнце, приводит к искривлению пространства — времени в окружающей его области.
Чем ближе к Солнцу, тем больше кривизна. Иными словами, структура пространства — времени в окрестности больших материальных тел становится неевклидовой. В этом неевклидовом пространстве тела продолжают выбирать возможные наиболее прямые пути, но то, что является прямым в пространстве — времени, изображается кривой линией, когда проектируется на пространство. Наш воображаемый ученый, если бы он изображал орбиту Земли на своем четырехмерном графике, представил бы ее в виде прямой линии. Мы, будучи трехмерными существами (точнее, существами, которые разделяют пространство—время на трехмерное пространство и одномерное время), видим ее путь в пространстве в виде эллипса.
Авторы, пишущие о теории относительности, часто объясняют это следующим образом. Представим себе плоский кусок резины, натянутый на прямоугольную рамку. Апельсин, положенный на этот кусок, создает впадину. Мраморный шарик, помещенный вблизи апельсина, будет скатываться к нему. Апельсин не «притягивает» шарик. Он создает поле (впадину) такой структуры, что шарик, выбирая путь наименьшего сопротивления, скатывается к нему.
Грубо (очень грубо) подобным же образом пространство — время искривляется в присутствии больших масс, таких, как Солнце. Это искривление и есть поле тяготения. Планета, движущаяся вокруг Солнца, движется по эллипсу не потому, что Солнце притягивает ее, а благодаря особым свойствам поля; в этом поле эллипс представляет собой наиболее прямой путь, по которому планета может двигаться в пространстве — времени.
Такой путь называется геодезической линией.
Это слово настолько важно в теории относительности, что его следует объяснить более подробно. На евклидовой плоскости, такой, как ровный лист бумаги, наиболее прямая линия между двумя точками есть прямая линия. Она является также кратчайшим расстоянием. На поверхности шара геодезическая линия между двумя точками есть дуга большого круга. Если натянуть веревку между этими точками, она отметит геодезическую линию. Последняя также представляет собой наиболее прямое и кратчайшее расстояние между двумя точками.
В четырехмерной евклидовой геометрии, где все измерения являются пространственными измерениями, геодезическая линия также есть кратчайшая и наиболее прямая линия, соединяющая две точки. Но в неевклидовой геометрии пространства — времени Эйнштейна это все не так просто. Имеется три пространственных измерения и одно временное измерение, объединенные согласно уравнениям теории относительности. Эти уравнения таковы, что геодезическая линия, хотя она по-прежнему остается наиболее прямым путем в пространстве—времени, есть длиннейшее, а не кратчайшее расстояние.
Это понятие невозможно объяснить, не прибегая к сложному математическому аппарату, но последний дает следующий курьезный результат. Тело, движущееся под действием только тяготения, всегда выбирает такой путь, на прохождение которого требуется наибольшее время, если последнее измеряется по его собственным часам. Бертран Рассел назвал это «законом космической лени». Яблоко падает по прямой вниз, ракета движется по параболе. Земля движется по эллипсу потому, что они «слишком ленивы», чтобы выбрать другие пути.
Именно этот закон космической лени заставляет тела двигаться в пространстве — времени так, что иногда это движение объясняют инерцией, а в других случаях тяготением. Если вы привяжете веревку к яблоку и закрутите ее по кругу, веревка не даст яблоку двигаться по прямой линии. Мы говорим, что инерция яблока натягивает веревку. Если веревка разорвется, яблоко полетит по прямой.
Нечто подобное происходит, когда яблоко падает с дерева. До того как оно упадет, ветка не дает ему двигаться по четырехмерной прямой. Яблоко на ветке покоится (по отношению к Земле), но оно движется во времени, так как непрерывно зреет. Если бы не было поля тяготения, это продвижение вдоль временной координаты изображалось бы прямой линией на четырехмерном графике. Но земное притяжение искривляет пространство — время в окрестностях яблока. Вследствие этого мировая линия яблока становится кривой. Когда яблоко срывается с ветки, оно продолжает двигаться в пространстве — времени, но (будучи ленивым яблоком) теперь выпрямляет свой путь и выбирает геодезическую линию. Мы видим эгу геодезическую линию как линию, по которой падает яблоко, и приписываем падение притяжению. Однако, если бы захотели, мы могли бы сказать, что инерция яблока, после того как оно внезапно было сброшено со своего искривленного пути, привела его на Землю.
Допустим, что после того, как яблоко упало, мимо проходил мальчишка и поддал его босой ногой.
Он вскрикнул от боли, так как ушиб пальцы. Последователь Ньютона сказал бы, что инерция яблока сопротивлялась этому удару. Последователь Эйнштейна может сказать то же самое, но он может также сказать, если ему это больше нравится, что пальцы на ноге мальчишки заставили весь космос (включая и пальцы) ускоряться в обратном направлении, а это привело к созданию поля тяготения, которое с большой силой притянуло яблоко к пальцам. Все это вопрос формулировки. Математически эта ситуация описывается одной системой пространственно-временных уравнений поля, но о ней можно говорить (благодаря принципу эквивалентности) на языке любой из двух ньютоновских формулировок (гравитация, инерция).
Хотя теория относительности заменяет тяготение геометрическим искривлением пространства — времени, она оставляет без ответа многие важные вопросы. Происходит это искривление мгновенно во всем пространстве или распространяется подобно волнам? Большинство физиков считает, что искривление движется подобно волне и это движение происходит со скоростью света. Высказано даже предположение, что гравитационные волны состоят из крошечных неделимых частиц, обладающих конечной энергией и называемых «гравитонами». До сих пор, однако, ни один эксперимент не обнаружил ни волн, ни гравитонов.
Роберт Дик, физик из Принстонского университета, считает, что тяготение постепенно становится слабее и, возможно, в настоящее время оно на 13 процентов меньше, чем было четыре или пять миллиардов лет назад, когда образовалась Земля. Если это так, то Земля, вероятно, расширяется и ее поверхность трескается при этом процессе. Солнце также должно было бы расширяться. Два миллиарда лет назад оно должно было быть меньше, плотнее и горячее: этот факт мог бы объяснить тропические условия, которые господствовали на большей части Земли в ранние геологические эпохи. Все эти соображения в настоящее время являются только догадками, но, может быть, скоро удастся поставить эксперимент по проверке теории Дика.