Категории
Самые читаемые

Читаем без скачивания Теория относительности для миллионов - Мартин Гарднер

Читать онлайн Теория относительности для миллионов - Мартин Гарднер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 ... 26
Перейти на страницу:

Если такие путешествия во времени станут возможными, то возникнут совершенно необычные моральные вопросы. Будет ли что-нибудь незаконного в том, например, что женщина вышла замуж за собственного пра-пра-пра-пра-пра-правнука?

Заметьте, пожалуйста: этот сорт путешествий во времени обходит все логические ловушки (этот бич научной фантастики), как, например, возможность попасть в прошлое и убить собственных родителей до вашего появления на свет или юркнуть в будущее и подстрелить самого себя, послав пулю в лоб.

Рассмотрим, например, положение с мисс Кэт из известного шуточного стишка:

Юная леди по имени Кэт

Двигалась много быстрее, чем свет.

Но попадала всегда не туда:

Быстро помчишься — придешь во вчера.

Перевод А. И. Базя

Возвратись она вчера, она должна была бы встретиться со своим двойником. В противном случае это не было бы действительно вчера. Но вчера не могло быть двух мисс Кэт, поскольку, отправляясь в путешествие во времени, мисс Кэт ничего не помнила о своей встрече со своим двойником, состоявшейся вчера. Итак, перед вами логическое противоречие. Такого типа путешествия во времени невозможны логически, если не предполагать существования мира, идентичного нашему, но движущегося по другому пути во времени (на день раньше). Даже при этом положение дел очень усложняется.

Заметьте также, что эйнштейновская форма путешествий во времени не приписывает путешественнику какого-то подлинного бессмертия или хотя бы долголетия. С точки зрения путешественника, старость подходит к нему всегда с нормальной скоростью. И лишь «собственное время» Земли кажется этому путешественнику несущимся с головокружительной скоростью.

Анри Бергсон, известный французский философ, был наиболее выдающимся из мыслителей, скрестивших шпаги с Эйнштейном из-за парадокса близнецов. Он много писал об этом парадоксе, потешаясь над тем, что казалось ему логически абсурдным. К сожалению, все им написанное доказало лишь то, что можно быть крупным философом без заметных знаний математики. В последние несколько лет протесты появились снова. Герберт Дингль, английский физик, «наиболее громко» отказывается поверить в парадокс. Уже немало лет он пишет остроумные статьи об этом парадоксе и обвиняет специалистов по теории относительности то в тупости, то в изворотливости. Поверхностный анализ, который будет проведен нами, конечно, не разъяснит полностью идущую полемику, участники которой быстро углубляются в сложные уравнения, но поможет уяснить общие причины, приведшие к почти единодушному признанию специалистами того, что парадокс близнецов будет осуществляться именно так, как написал об этом Эйнштейн.

Возражение Дингля, наиболее сильное из когда-либо выдвинутых против парадокса близнецов, заключается в следующем. Согласно общей теории относительности не существует никакого абсолютного движения, нет «избранной» системы отсчета.

Всегда можно выбрать движущийся предмет за неподвижную систему отсчета, не нарушая при этом никаких законов природы. Когда за систему отсчета принята Земля, то космонавт совершает длительное путешествие, возвращается и обнаруживает, что стал моложе брата-домоседа. А что произойдет, если систему отсчета связать с космическим кораблем? Теперь мы должны считать, что Земля проделала длительное путешествие и возвратилась назад.

В этом случае домоседом будет тот из близнецов, который находился в космическом корабле. Когда Земля возвратится, не станет ли брат, находившийся на ней, моложе? Если так произойдет, то в создавшемся положении парадоксальный вызов здравому смыслу уступит место очевидному логическому противоречию. Ясно, что каждый из близнецов не может быть моложе другого.

Дингль хотел бы сделать из этого вывод: или необходимо предположить, что по окончании путешествия возраст близнецов будет в точности одинаков, или принцип относительности должен быть отброшен.

Не выполняя никаких вычислений, нетрудно понять, что кроме этих двух альтернатив существуют и другие. Верно, что всякое движение относительно, но в данном случае имеется одно, очень важное различие между относительным движением космонавта и относительным движением домоседа. Домосед неподвижен относительно Вселенной.

Как эта разница сказывается на парадоксе?

Допустим, что космонавт отправляется проведать планету X где-то в Галактике. Его путешествие проходит при постоянной скорости. Часы домоседа связаны с инерциальной системой отсчета Земли, и их показания совпадают с показаниями всех остальных часов на Земле потому, что все они неподвижны по отношению друг к другу. Часы космонавта связаны с другой инерциальной системой отсчета, с кораблем. Если бы корабль постоянно придерживался одного направления, то не возникло бы никакого парадокса вследствие того, что не было бы никакого способа сравнить показания обоих часов.

Но у планеты X корабль останавливается и поворачивает обратно. При этом инерциальная система отсчета изменяется: вместо системы отсчета, движущейся от Земли, появляется система, движущаяся к Земле. При таком изменении возникают громадные силы инерции, поскольку при повороте корабль испытывает ускорение. И если ускорение при повороте будет очень большим, то космонавт (а не его брат-близнец на Земле) погибнет. Эти силы инерции возникают, конечно, из-за того, что космонавт ускоряется по отношению к Вселенной. Они не возникают на Земле, потому что Земля не испытывает такого ускорения.

С одной точки зрения, можно было бы сказать, что силы инерции, созданные ускорением, «вызывают» замедление часов космонавта; с другой точки зрения, возникновение ускорения просто обнаруживает изменение системы отсчета. Вследствие такого изменения мировая линия космического корабля, его путь на графике в четырехмерном пространстве — времени Минковского изменяется так, что полное «собственное время» путешествия с возвратом оказывается меньше, чем полное собственное время вдоль мировой линии близнеца-домоседа. При изменении системы отсчета участвует ускорение, но в расчет входят только уравнения специальной теории.

Возражение Дингля все еще сохраняется, так как точно те же вычисления можно было бы проделать и при предположении, что неподвижная система отсчета связана с кораблем, а не с Землей. Теперь в путь отправляется Земля, затем она возвращается обратно, меняя инерциальную систему отсчета. Почему бы не проделать те же вычисления и на основе тех же уравнений не показать, что время на Земле отстало? И эти вычисления были бы справедливы, не будь одного необычайной важности факта: при движении Земли вся Вселенная двигалась бы вместе с нею. При повороте Земли поворачивалась бы и Вселенная. Это ускорение Вселенной создало бы мощное гравитационное поле. А как уже было показано, тяготение замедляет часы. Часы на Солнце, например, тикают реже, чем такие же часы на Земле, а на Земле реже, чем на Луне. После выполнения всех расчетов оказывается, что гравитационное поле, созданное ускорением космоса, замедлило бы часы в космическом корабле по сравнению с земными в точности на столько же, на сколько они замедлялись в предыдущем случае. Гравитационное поле, конечно, не повлияло на земные часы. Земля неподвижна относительно космоса, следовательно, на ней и не возникало дополнительного гравитационного поля.

Поучительно рассмотреть случай, при котором возникает точно такая же разница во времени, хотя никаких ускорений нет. Космический корабль А пролетает мимо Земли с постоянной скоростью, направляясь к планете X. В момент прохождения корабля мимо Земли часы на нем устанавливаются на ноль. Корабль А продолжает свое движение к планете X и проходит мимо космического корабля Б, движущегося с постоянной скоростью в противоположном направлении. В момент наибольшего сближения корабль А по радио сообщает кораблю Б время (измеренное по своим часам), прошедшее с момента пролета им мимо Земли. На корабле Б запоминают эти сведения и продолжают с постоянной скоростью двигаться к Земле. Проходя мимо Земли, они сообщают на Землю сведения о времени, затраченном А на путешествие с Земли до планеты X, а также время, затраченное Б (и измеренное по его часам) на путешествие от планеты X до Земли. Сумма этих двух промежутков времени будет меньше, чем время (измеренное по земным часам), протекшее с момента прохождения А мимо Земли до момента прохождения Б.

Эта разница во времени может быть вычислена по уравнениям специальной теории. Никаких ускорений здесь не было. Конечно, в данном случае нет и парадокса близнецов, поскольку нет космонавта, улетевшего и возвратившегося назад. Можно было бы предположить, что путешествующий близнец отправился на корабле А, затем пересел на корабль Б и вернулся обратно; но этого нельзя сделать без перехода от одной инерциальной системы отсчета к другой. Чтобы сделать такую пересадку, он должен был бы подвергнуться действию потрясающе мощных сил инерции. Эти силы вызывались бы тем, что изменилась его система отсчета. При желании мы могли бы сказать, что силы инерции замедлили часы близнеца. Однако если рассматривать весь эпизод с точки зрения путешествующего близнеца, связав его с неподвижной системой отсчета, то в рассуждения войдет сдвигающийся космос, создающий гравитационное поле. (Главный источник путаницы при рассмотрении парадокса близнецов заключается в том, что положение может быть описано с разных точек зрения.) Независимо от принятой точки зрения уравнения теории относительности всегда дают одну и ту же разницу во времени. Эту разницу можно получить, пользуясь одной лишь специальной теорией. И вообще для обсуждения парадокса близнецов мы привлекли общую теорию лишь для того, чтобы опровергнуть возражения Дингля.

1 ... 14 15 16 17 18 19 20 21 22 ... 26
Перейти на страницу:
На этой странице вы можете бесплатно скачать Теория относительности для миллионов - Мартин Гарднер торрент бесплатно.
Комментарии