Читаем без скачивания Взрывающиеся солнца. Тайны сверхновых - Айзек Азимов
Шрифт:
Интервал:
Закладка:
Туманность Андромеды с сияющей в ней звездой была сфотографирована, но спектров последней не получили. Спектры тусклых объектов получить в то время было очень трудно. Быстрое возгорание и медленное угасание S Андромеды были все же типичны для новой; единственный вопрос, который можно было задать себе, «Почему же она такая слабая?» Этот вопрос не был, однако, таким уж неожиданным. Новая может выступать в широком диапазоне блеска. В пике своего блеска она может быть чрезвычайно яркой, как звезда Браге, или весьма скромной, как новая, открытая Хайндом в 1848 г., имевшая всего лишь четвертую звездную величину. Новая S Андромеды была просто менее заметной, только и всего.
В то время ничего не знали о природе и причинах возникновения новых, поэтому астрономы полагали, что все зависит от того, какой яркостью обладала звезда с самого начала. Яркая звезда вспыхнет необычайно сильно, менее яркая будет скромнее в своем сиянии, а совсем тусклая может пройти вовсе не замеченной невооруженным глазом даже в пике своего блеска.
Итак, S Андромеды получила отставку. Она появилась и исчезла, была замечена и забыта. До 1901 г. В этом году появилась Новая Персея и недолго сияла как звезда нулевой величины. По тому, как распространялся свет в кольце окружающей ее пыли, можно было вычислить ее удаленность. Ведь астрономы наблюдали видимую скорость света и, зная истинную его скорость, могли без труда определить расстояние, на котором свет распространялся для стороннего наблюдателя. Они заключили, что Новая Персея находится на расстоянии 30 парсек от Земли.
Для звезды это не далеко. Есть несколько тысяч звезд, которые ближе, но многие миллиарды — дальше. Появилась мысль, что Новая Персея светит так ярко в силу единственной причины — ее близости.
Не могло ли быть так, что все новые достигают более или менее равного уровня светимости (некоторой абсолютной звездной величины), однако разница в яркости происходит только вследствие разной их удаленности?
Например, предположим, что S Андромеды достигает величины всего 7,2 из-за ее большей удаленности от нас, чем Новая Персея. Если бы обе эти новые имели равные абсолютные величины в максимуме блеска, тогда S Андромеды, чтобы светить так слабо, как она светит, должна отстоять от нас на расстояние порядка 500 парсек. Если это так, то и туманность Андромеды должна быть на удалении 500 парсек, как и S Андромеды. Если S Андромеды находится перед туманностью, т. е. ближе к нам, то туманность отстоит от нас более чем на 500 парсек и может быть и значительно дальше. Но даже если туманность Андромеды удалена не более чем на 500 парсек, она не могла быть планетарной системой в процессе образования.
Никакая отдельная планетарная система не может отстоять на 500 парсек и выглядеть в небе большой, как эта туманность.
Астрономы отказались принять описанное выше рассуждение, основанное лишь на предположении, что Новая Персея и S Андромеды имеют одинаковый максимум блеска.
Казалось, легче было предположить, что это звезды с разным максимумом блеска и S Андромеды, не кажется очень тусклой в сравнении с Новой Персея, но фактически такой и является. Тогда выходило, что S Андромеды находится совсем близко (в космических, конечно, масштабах), гораздо ближе 500 парсек, и так же близка, естественно, и сама туманность Андромеды. В таком случае туманность Андромеды все-таки может быть развивающейся планетарной системой.
ГАЛАКТИКА АНДРОМЕДЫ
Американский астроном Кертис (1872–1942) не был согласен с таким легким выходом из положения. Предположим, рассуждал он, что S Андромеды очень далека и что туманность Андромеды еще дальше, много дальше, чем предполагалось. А не могла ли туманность Андромеды, если она столь отдаленна, быть островной вселенной, самостоятельной звездной галактикой, находящейся далеко за пределами нашей? Подтверждается ли тем самым верность идеи Канта, выдвинутой им полтора века назад?
Если так, то туманность Андромеды должна состоять из очень-очень многих довольно тусклых звезд. Среди этого сгущения звезд время от времени должны вспыхивать новые. И если звезды в туманности пока неразличимы в телескопы, любая из них, вспыхнув как новая, может стать видимой в телескоп, как это и случилось с S Андромеды.
Начиная с 1917 г. Кертис в самом деле открыл новые в туманности Андромеды, целые дюжины новых. В том, что они новые, не было ни малейшего сомнения: они появлялись, потом угасали, затем появлялись и угасали другие.
В этом скопище новых можно было подметить две важные особенности. Первая особенность в том, что это действительно было скопище. Ни в одной другой области неба не появлялось так много новых на одном ограниченном участке!
Это означало, что они не случайно, не просто так появлялись в этом направлении неба независимо от туманности, которой случилось вне всякой связи с ними расположиться позади.
Если б это было случайностью, почему такое множество новых зажигалось бы именно в этом направлении?
Нелепо всерьез задаваться вопросом, почему уникальное собрание новых и туманность Андромеды совпали по направлению, не имея между собой никакой осязаемой связи.
Кертис был абсолютно уверен в своем убеждении, что новые находились именно в туманности.
Но почему их так много?
Вот почему. Если туманность Андромеды действительно островная вселенная и самостоятельная галактика, то она должна иметь примерно столько же звезд, сколько имеет наша собственная. Поэтому в ней, кажущейся нашему глазу всего лишь пятнышком света, и новых должно появляться столько же, сколько в нашей Галактике, заполняющей все остальное небо.
В сущности, в этой туманности должно обнаруживаться даже больше новых, чем в Галактике. Кертис заметил, что в туманности вдоль ее кромок имеются пятна темноты, которые, будь она настоящей галактикой, могли бы оказаться большими протяженностями темных туманностей — газопылевых облаков, затемняющих звезды, расположенные за ними.
То же явление могло наблюдаться и в нашей Галактике. В дополнение к небольшим темным пятнам во Млечном Пути могли существовать гораздо более крупные, о которых мы не подозревали (со временем это было доказано); так что многие плотно населенные звездами участки Млечного Пути для нас закрыты. Среди этих крупных, скрытых от нашего взора звездных поселений (численно гораздо больших, чем виденные нами) ежегодно может появляться множество новых, спрятанных завесами пылевых облаков.
Что же касается туманности Андромеды, то мы с нашей более выгодной точки наблюдения можем видеть, что делается за этими облаками. Поэтому-то скрытых от глаз новых там почти нет. В самом деле, в туманности Андромеды было замечено больше новых, чем во всем остальном звездном небе.
Второй интересной особенностью новых Андромеды являлась их чрезвычайная слабость. Они были едва заметны даже в самый сильный телескоп в период их наибольшей яркости.
Если они были обычными новыми, как, например, Новая Персея, то они и должны были смотреться очень слабыми, принимая во внимание их чрезвычайную отдаленность. А это уже совпадало с концепцией туманности Андромеды как независимой галактики.
Кертис стал убежденным, выдающимся пропагандистом идеи островных вселенных. Впрочем, он был в этом не одинок.
Идея островных вселенных по-прежнему усваивалась с трудом, особенно после того, как появилось новое свидетельство, что туманность Андромеды является близлежащим объектом.
Голландско-американский астроном Адриан Ван Маанен (1884–1946) занялся измерением ничтожно малых движений астрономических объектов, в частности движений спиральных туманностей. Он подтвердил ранее сделанное наблюдение Робертса о том, что туманность Андромеды имеет измеримую величину вращения. Он заявил, что измеримую величину вращения имеют и некоторые другие спиральные туманности.
Теперь мы знаем, что измерения Маанена были неверны по нескольким причинам. Он измерял такие микроскопические изменения, которые едва укладывались в пределы разрешающей способности его инструментов, но то ли инструменты были чуть-чуть не в порядке, то ли его твердая вера в то, что эти движения все-таки должны быть, — все это наложило отпечаток на результаты его замеров.
Тем не менее Ван Маанен завоевал отличную, в целом заслуженную репутацию, и люди были склонны ему верить.
Если туманность Андромеды и выказывала некоторое движение, она должна быть близкой, невзирая ни на какие сомнительные сообщения о сгустках чуть теплющихся звезд.
Одним из тех, кто оказался вовлеченным в полемику, был американский астроном Харлоу Шэпли (1885–1972). Незадолго до этого Шэпли использовал переменные цефеиды для измерения расстояний (техника, разработанная американским астрономом Генриеттой Суон Левитт (1868–1921)). Шэпли смог показать, что истинный центр Галактики находится далеко от нашей Солнечной системы и мы, обитатели Земли, живем далеко на ее окраине. Шэпли был первым человеком, установившим истинный размер Галактики, без ее преуменьшения, как было во всех предыдущих оценках. (Первоначальная оценка Шэпли была несколько завышенной.) Он также первым определил расстояние до Магеллановых Облаков.