Читаем без скачивания 10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА - Чарльз Флауэрс
Шрифт:
Интервал:
Закладка:
Уже самые первые спектрограммы туманностей поставили точку в спорах об их природе и происхождении: примерно треть туманностей оказалась звездными скоплениями, а другие две третьих – смесью космической пыли, газов и мелких частиц.
В начале 20-х годов именно эти далекие огоньки в космическом пространстве почему-то овладели всем вниманием и временем Хаббла, когда он длинными холодными ночами работал в обсерватории Маунт Вильсон. Трудно оценивать психологию людей такого типа. Было ли это увлечение просто проявлением постоянно присущего Хабблу индивидуализма и желания выделиться, подобно его изысканному (но поддельному, всего лишь выученному) английскому произношению? Или он действительно чувствовал, что в этих далеких и малозаметных космических огоньках скрыто нечто очень важное? Эти рассуждения сейчас представляются бессмыслеными и бесполезными, поскольку Хаббл оказался прав. Он угадал, вытащил счастливый билет в «лотерее» жизни и обессмертил свое имя, сумев впервые в истории человечества раздвинуть границы познаваемого и воспринимаемого мира!
Одним из самых известных объектов описываемого типа является так называемая Большая Туманность в созвездии Андромеды, которую впервые зарегистрировал, описал и назвал «маленьким облачком» персидский астроном Аль-Суфи более тысячи назад, в 905 г. Спектрограммы, полученные на телескопе «Хукер», были нечеткими и соответствовали скорее звезде, чем газам. Хаббл настойчиво решил уточнить результаты и, экспонируя фотопластинки достаточно долго, сумел получить однозначный ответ. Большая Туманность при тщательном изучении неожиданно оказалась огромной галактикой (в виде спирали с диаметром около 150 000 световых лет), лежащей вне Млечного Пути и состоящей из сотен миллионов звезд. Поэтому, любуясь Большой Туманностью в ясную ночь, можно вспомнить, что это единственный видимый невооруженным глазом объект, не принадлежащий нашей собственной галактике, нашему космическому «дому».
Внутри спирали Большой Туманности Хабблу посчастливилось обнаружить двенадцать цефеид, этих своеобразных космических «доносчиков», а измерив периодичность их излучения, он дополнительно выяснил, что некоторые из них находятся на расстоянии более 800 000 световых лет от нас. Эти данные позднее многократно перепроверялись, так что в настоящее время считается твердо установленным, что Туманность Андромеды (профессиональные астрономы обозначают ее прозаическим сокращением М13) удалена от нас на 2 миллиона световых лет. Однако важнейшим достижением Хаббла стало не измерение конкретных параметров конкретных звезд, а создание совершенно новой концепции строения Вселенной, благодаря чему человечество впервые осознало, что наша галактика составляет лишь небольшую часть, а вовсе не является всей Вселенной. Хаббл доказал также, что межзвездные расстояния намного больше, чем представлялось раньше астрономам в самых дерзких фантазиях.
Не менее важным оказалось и то, что обнаруженные космические «соседи» и входящие в их состав звездные системы не были фиксированными, жестко «закрепленными» в пространстве. Космос начал двигаться и качаться, оказался подвижным. Река Гераклита, великая античная метафора изменчивости, приобрела вдруг новый, гораздо более широкий и глубокий смысл после того, как спектрограммы Хаббла наглядно показали, что даже звездное небо не является неизменным. Солнечная система, звезды, галактики и даже цефеиды, ранее считавшиеся «верстовыми столбами» пространства, предстали перед удивленными астрономами в качестве подвижных, стремительно передвигающихся объектов.
Каскад открытий заставил ученых и все человечество вновь задуматься о сущности и устройстве природы и породил множество новых вопросов. Что является причиной этой сумасшедшей космической гонки? Существуют ли какие-то направления в движении созвездий? И наконец, какова судьба Вселенной и что ожидает нас в будущем? На первые два вопроса через 30 лет были получены достаточно определенные ответы (хотя споры на эту тему продолжаются и поныне), но последний и самый важный вопрос пока остается открытым.
Обнаруженная Хабблом поразительная подвижность и нестабильность Вселенной изменила многие фундаментальные представления астрономии, тем более, что новые методы получения и исследования спектров стали приносить все более очевидные доказательства стремительных перемещений самых разнообразных космических объектов.
Спектрография позволяет определять не только химический состав излучающего источника, но и (при более тщательном изучении спектров) скорость движения этого источника относительно наблюдателя. Перед объяснением принципа определения скорости следует описать, хотя бы коротко, весь спектр электромагнитных волн, подлежащих измерению и анализу. Диапазон электромагнитного излучения, от высокоэнергетических гамма-квантов до низкоэнергетических радиоволн, условно подразделяется на несколько областей с достаточно привычными названиями: гамма-лучи, рентгеновское излучение, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, микроволновое излучение и, наконец, знакомые всем радиоволны. Каждый тип излучения характеризуется определенной длиной волны, энергией и частотой колебаний, так что на одном краю спектра располагаются очень короткие, высокочастотные гамма-лучи с высокой энергией, а на другом – низкочастотные и низкоэнергетические радиоволны с длиной волны в несколько километров. Воспринимаемая нашим зрением область электромагнитных волн (так называемый видимый спектр) покрывает лишь 2% всего электромагнитного спектра и располагается примерно в его центре.
Принцип спектрографического определения скорости основан на том, что излучение удаляющегося от нас источника (в данном случае небесного объекта) немного смещается в сторону длинноволнового, низкоэнергетического края спектра, где расположена красная часть спектра, вследствие чего ученые называют это явление просто красным смещением. Совершенно аналогично, излучение приближающегося объекта смещается к другому краю спектра, что, соответственно, называют синим или фиолетовым смещением.
Это явление, в сущности, представляет собой оптический аналог широкоизвестного эффекта Допплера для движущихся источников звука. Каждый из нас замечал, что музыкальная тональность звуков проезжающего мимо автомобиля изменяется (при приближении звуки становятся более высокими, а при удалении – более низкими), что также объясняется смещением длин волн то в одну, то в другую часть спектра.
Узнав о том, что еще в 1912г. американский астроном Весто Мелвин Слипер зарегистрировал фиолетовый сдвиг в спектре Туманности Андромеды, Хаббл пришел к выводу, что она приближается к нашей галактике. Обнаруженные ранее Хабблом цефеиды позволили ему настаивать, что речь идет не о потоках космического газа, а о быстром движении гигантского звездного скопления, целой галактики (в настоящее время установлено, что Туманность Андромеды и наша галактика, Млечный Путь, мчатся навстречу друг другу со скоростью около 90 километров в секунду). Слипер изучал и другие туманности (позднее все они оказались галактиками) и обнаружил в спектре большинства из них красное смещение, доказывающее, что они удаляются от нас с высокой скоростью, доходящей до 1200 километров в секунду.
Измерения Слипера были, конечно, крупным научным достижением своего времени, но именно Хаббл догадался проанализировать и объяснить их с точки зрения смещения спектральных характеристик, что позволило ему создать еще одну, исключительно важную и интересную концепцию. Вместе с Мильтоном Хюмасоном он обнаружил, что существует прямая взаимосвязь между красным смещением галактик и расстоянием до них, т. е. чем больше это смещение (иными словами, чем выше скорость галактики), тем дальше от Земли она находится.
Этот результат, получивший название закона Хаббла, и следующие из него выводы буквально ошеломили и даже напугали многих ученых (интересно отметить, как легко общественность привыкает к новым научным представлениям, так что сегодня идеи Хаббла воспринимаются как нечто обычное даже школьниками и любителями научно-популярных телевизионных передач). Во-первых, в соответствии с законом Хаббла некоторые галактики двигались с огромной скоростью, доходящей до одной седьмой от скорости света. Во-вторых, что казалось совершенно невероятным, в теории Хаббла все вещество мира стремительно «разлеталось» в разные стороны, т. е. Вселенная расширялась! Небольшие смещения в спектрах доказывают движение гигантских звездных скоплений с огромной скоростью, а ставший знаменитым закон Хаббла устанавливает связь между расстоянием до галактики и ее скоростью. Хаббл умер в 1953 г., а через три года Хьюмасон и его сотрудники пересмотрели и обновили содержание закона Хаббла для учета новой теории, в соответствии с которой Вселенная возникла 10-12 миллиардов лет назад в результате таинственного события (получившего название Большой Взрыв или просто Биг Бэнг). Поправки были связаны с тем, что скорость разбегания галактик в начальной фазе взрыва была, по-видимому, значительно выше, чем считалось раньше, но затем несколько снизилась.