Категории
Самые читаемые

Читаем без скачивания Земля и космос. От реальности к гипотезе - Айзек Азимов

Читать онлайн Земля и космос. От реальности к гипотезе - Айзек Азимов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 31 32 33 34 35 36 ... 49
Перейти на страницу:

Концепция валентности не только отличается простотой, ясностью и явной полезностью, но и вводит целые числа, поскольку валентностей 1,5 или 2,32 — или какой-либо в этом духе — не существует. (В действительности наука XX века дала новую концепцию, которая в самом деле ввела что-то вроде дробных валентностей, но это не влияет на систему доказательств в данной главе. — Примеч. авт.)

В 1869 году русский химик Дмитрий Иванович Менделеев попытался организовать элементы согласно молекулярной массе и валентности. Результатом стала система, очень упрощенную и неполную версию которой я привожу в таблице 1 с атомными весами, округленными до одной десятой после запятой.

В таблице 1 я даю химические элементы так, чтобы сэкономить место; это не повлияет на систему доказательств и ни в коей мере не запутает, даже если вы не знаете, каким символом какой элемент обозначен. Когда мне придется упомянуть определенный элемент, я дам его полное название, вместе с символом.

Строки в таблице 1 содержат тесно связанные семейства элементов. К примеру, верхняя строка содержит литий (Li), натрий (Na), калий (К), рубидий (Rb), цезий (Cs) и франций (Fr), которые имеют одинаковые свойства. Эти элементы медленно плавятся, исключительно активны и при определенных условиях реагируют примерно одинаково. Более того, там, где различия существуют, они проявляют себя постоянным изменением вдоль строки. От лития к натрию, калию и так далее точка плавления вещества становится ниже, а активность его возрастает. Эти шесть элементов называют щелочными металлами.

Вторая строка содержит шесть щелочноземельных элементов, которые тоже имеют сходные свойства. И так далее на протяжении таблицы.

Заметим, что в периоде 5 теллур (Те) идет перед йодом (I), хотя теллур имеет большую атомную массу, а значит, должен находиться после йода, если бы классификация шла только по атомной массе.

Именно Менделееву принадлежит великая заслуга в том, что валентность (как и химические свойства в целом) стала учитываться в первую очередь по отношению к атомной массе. Для того чтобы поместить теллур и йод в надлежащее семейство с надлежащей валентностью, пришлось поменять порядок следования атомной массы. Более сложное знание атомной структуры, обретенное химиками в дальнейшем, доказало, что в этом отношении интуиция Менделеева оказалась абсолютно правильной.

Когда мы перемещаемся вниз по списку элементов согласно их молекулярной массе, периодически повторяется определенный набор свойств — по этой причине этот список, организованный так, что определенные наборы укладываются точно в строки или колонки, называются периодической таблицей.

В то время, когда Менделеев впервые выдвинул свою Периодическую систему, значительное число элементов, приведенных в таблице 1, еще не было открыто. Они указаны в таблице 1 звездочкой.

К примеру, шесть элементов в строке внизу — гелий (He), неон (Ne), аргон (Ar), криптон (Kr), ксенон (Xe) и радон (Rn) — не были известны в 1869 году. Об их существовании совершенно не представляли, и без них Периодическая система, казалось, имела законченный вид. Если идти последовательно сверху вниз в порядке атомных весов элементов, то изменение валентности в таблице 1 происходит (если исключить нижний ряд) по следующему порядку: 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2 и так далее.

Однако, когда были открыты элементы в нижней строке, оказалось, что они не вступают в соединения с любыми другими элементами и, следовательно, имеют нулевую валентность. Таким образом, последовательность валентностей изменилась на следующую: 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2 и так далее.

Элементы нижней строки, имеющие схожие свойства и называемые инертными газами, или благородными газами, просто расширили таблицу, но не нарушили ее порядок. Наоборот, введение 0 в надлежащем месте сделало таблицу даже «элегантнее». Тот факт, что эта весьма неожиданно обнаруженная группа элементов столь превосходно вписалась в Периодическую систему, послужил дополнительным доказательством концепции Менделеева.

Для того чтобы сохранить аргон (Ar) на своем правильном месте в семействе инертных газов, его следует поставить перед калием (K), даже хотя это меняет порядок следования по молекулярным массам. И снова это повторилось в таблице с теллуром (Te) и йодом (I).

Заметим также, что в таблице 1 пять элементов с самыми большими атомными массами были неизвестны во времена Менделеева. Это полоний (Po), астат (At), радон (Rn), франций (Fr) и радий (Ra). Эти элементы были обнаружены в 1890-х и в последующие годы; они являются радиоактивными. Все эти элементы относятся к нестабильным и присутствуют в земной коре в очень малых количествах. Поскольку все они располагаются в конце таблицы, их отсутствие не влияло на все остальные.

Затем возник фтор (F), который, строго говоря, не был хорошо изучен во времена Менделеева. Это очень своеобразный элемент. Фтор был обнаружен в различных соединениях, из которых его извлечь не удавалось. Свойства фтора были известны, но на основании свойств его соединений. Его связи в соединениях оказались столь тесны, что только в 1886 году химики смогли выделить фтор из соединений, чтобы исследовать этот элемент в чистом виде. Даже малоизученный, фтор присутствовал в таблице с самого начала (это напоминает ситуацию с глобусом, северные и южные поля которого были обозначены, даже несмотря на то, что полюсов достигнуть пока не удалось).

Было еще два элемента таблицы, галлий (Ga) и германий (Ge), с особой судьбой. После их обнаружения не пришлось искать, поместить ли их в последний ряд или последнюю строку, чтобы они не нарушали общий порядок. Хотя об их существовании не подозревалось, для них оставили «вакантное место» в середине таблицы.

Если бы это место не было оставлено и будущие галлий и германий были бы проигнорированы, то при попытке перечислить элементы в порядке атомных масс пришлось бы поместить мышьяк (As) справа от алюминия (Al) и селена (Se) и справа от кремния (Si) и т. д. Это бы совершенно разрушило организацию по семействам и валентности.

Менделеев отказался от этого, и это было одним из величайших его достижений. Он поместил мышьяк (As) справа от фосфора (P), а селен (Se) справа от серы (S), где их места соответствовали их свойствам. Поскольку это оставило два свободных места справа от алюминия (Al) и кремния (Si), Менделеев решил, что они предназначены для двух элементов, которые еще только предстояло открыть. Он назвал их эка-алюминий и эка-кремний, «эка» — санскритское слово, обозначающее единицу. Другими словами, отсутствующие элементы находились на одно место справа от алюминия и кремния соответственно.

Более того, Менделеев предсказал свойства отсутствовавших элементов с большой точностью — он счел, что галлий (Ga) будет иметь свойства, промежуточные между алюминием (Al) и индием (In), а германий (Ge) — промежуточные между кремнием (Si) и цинком (Sn).

Поначалу большинство химиков мира снисходительно улыбались на «этого сумасшедшего русского», но в 1875 году был открыт галлий, а в 1886 году германий, и предсказания Менделеева сбылись во всех отношениях. Химики перестали смеяться.

Значит ли это, что описываемая нами система совершенна?

Увы, нет. Версия Периодической системы, что приведена в таблице 1, содержит лишь сорок четыре элемента, а их намного больше. Такие хорошо известные элементы, как золото, серебро, медь, железо, платина, марганец и вольфрам (все прекрасно изученные во времена Менделеева), не имели своего места в Периодической системе — в той форме, в которой она представлена в таблице 1.

Следует ли после этого отбросить систему, или же можно найти место для дополнительных элементов?

Обратите внимание, что три ячейки таблицы я пометил знаком #. Между кальцием (Ca) и галлием (Ga) разница в атомных массах составляет 29,7; между стронцием (Sr) и индием (In) 27,2; а между барием (Ba) и таллием (Tl) целых 67,1. Эти разницы немного больше, чем где-либо в Периодической системе. Если не обращать внимания на эти три интервала, то средняя разница в атомных массах от элемента к элементу во всей остальной таблице составит только 2,5.

Если мы примем 2,5 за среднюю атомную массу между соседними элементами таблицы, то останется пространство для двенадцати элементов между кальцием (Ca) и галлием (Ga), для одиннадцати элементов между стронцием (Sr) и индием (In) и для не менее чем двадцати семи между барием (Ba) и таллием (Tl).

Возможно ли это?

Да, возможно, если мы решим, что периоды в Периодической системе могут иметь не одинаковую длину (как считали некоторые поначалу), а увеличиваться по направлению к концу таблицы.

К примеру, во времена Менделеева в первом периоде имелся только один элемент, водород (H), тогда как во втором и третьем периодах было по семь элементов. Через одно поколение, когда были открыты инертные газы, оказалось, что в первом периоде находятся уже два элемента, а во втором и третьем периодах по восемь (с тех пор здесь изменений не было). Тогда почему в следующих периодах нельзя увеличить число элементов до двадцати, тридцати и даже больше?

1 ... 28 29 30 31 32 33 34 35 36 ... 49
Перейти на страницу:
На этой странице вы можете бесплатно скачать Земля и космос. От реальности к гипотезе - Айзек Азимов торрент бесплатно.
Комментарии