Читаем без скачивания Тайны памяти (с иллюстрациями) - Борис Сергеев
Шрифт:
Интервал:
Закладка:
Итак, образ не поточечное описание изображения. Спроецированное на многотысячных ансамблях сетчатки, оно становится образом на вершине многоэтажной пирамиды детекторов. Создание образа есть творческий процесс, связанный с явлениями памяти и обучения.
Искры из глаз
Иногда говорят: удар был так силен, что искры посыпались из глаз. Действительно, удар по лицу, подзатыльник и вообще удар по голове вызывает у пострадавшего зрительные ощущения: похоже, что хотя и не из глаз, но в непосредственной близости от них вылетает россыпь бенгальских огней. К сожалению, сторонний наблюдатель не в состоянии насладиться этим ослепительным зрелищем, а потерпевшему и вовсе не до того.
Аналогичный эффект можно вызвать и более деликатным способом, путем точечного раздражения электрическим током затылочных областей коры больших полушарий. Человек, некоторое время находившийся в темноте, или больной, потерявший зрение, видит вспыхнувшую в черном бездонном небе одинокую звезду, световое пятно или реже небольшую светящуюся полоску. Описанное явление носит название фосфена. Выходит, что мозг может видеть, не прибегая к помощи глаз. Значит, можно сделать попытку вернуть зрение лицам, потерявшим его в результате болезни глаз.
В Западной Германии 15 лет назад слепому вживили в затылочную область мозга 4 стальные проволочки. От 4 фотоэлементов на каждый электрод подавался электрический ток, усиливаемый специальным устройством. Водя вокруг себя батарейкой фотоэлементов, больной мог найти источник света: настольную лампу, зажженный карманный фонарик.
Четырех световоспринимающих элементов недостаточно, чтобы восполнить потерю глаз. Даже у мухи их неизмеримо больше. Человеческий глаз воспринимает зрительное изображение с помощью 7 миллионов колбочек и 130 миллионов палочек и передает в мозг по 900 тысячам нервных волокон.
В настоящее время искусственный глаз представляется следующим образом. Во-первых, нужна миниатюрная матрица световоспринимающих элементов и объектив, фокусирующий изображение. Во-вторых, – устройство, преобразующее оптическую информацию в электрический стимул. И наконец, в-третьих, – сложный, многоячеистый электрод, накладываемый на мозг для его раздражения.
Трудней всего создать среднее звено. Это должен быть крохотный, умещающийся под шляпой компьютер для преобразования информации фотоэлементов и подгонку ее под параметры мозга.
Геометрия раздражения мозга может не соответствовать геометрии возникающих ощущений. Машина должна разобраться в этом, держать в памяти сведения о местоположении фосфенов и преобразовывать соответствующим образом сигналы фотоэлементов.
Под разными электродами будут возникать фосфены неодинаковой яркости. Компьютер должен запомнить чувствительность каждого участка мозга и соответствующим образом регулировать раздражение, чтобы его яркость точно соответствовала яркости изображения.
Наконец, чтобы возник фосфен, нужно одиночные импульсы фотоэлементов многократно повторять с частотой до 100 раз в секунду.
На пути искусственного глаза стоят огромные трудности. На человеке нельзя экспериментировать, а у животного не спросишь, видит ли оно фосфен и каков он. У медиков нет уверенности, что постоянная стимуляция мозга окажется безвредной для человека, и никто из хирургов не решится надолго оставить толстый пучок электродов в мозгу больного.
В силу огромной сложности и значительного риска искусственный глаз опробован лишь дважды. В первом случае в мозг ввели 80 электродов, из них 40 оказались способными вызывать фосфен. За 4 года из-за поломки большинство электродов перестали вызывать эффект, а оставшихся было недостаточно для моделирования зрения.
Вторым пациентом стал мужчина 60 лет, лишенный зрения на протяжении 30 лет. Ему вживили 75 электродов, 68 из них смогло работать. К сожалению, размер возникающих фосфенов был невелик. Они занимали в поле зрения площадь порядка 1 градуса. Для мозга не прошло бесследно длительное отсутствие зрительных впечатлений. С помощью искусственного глаза больной мог без труда опознавать простые зрительные изображения, однако, ощупывая рукой, он это делал быстрее.
Глазной протез позволял видеть только относительно крупные изображения, так как его разрешающая способность в 2 тысячи раз меньше человеческого глаза. Все-таки, хотя и подслеповатые, искусственные глаза смогут вернуть больному настоящее зрение, когда ученые сумеют вживлять в мозг раз в 100 больше электродов, чем было сделано в первых пробах. Проблема протезирования зрения кажется в настоящее время принципиально возможной.
Информация звуковых волн
Народная поговорка гласит: не каждому слуху верь. И не веришь! Мы живем в хаосе звуков, но на многие ли из них обращаем внимание?
Задача органа слуха – определить, что служит источником звуковых волн и какими свойствами он обладает: неподвижен ли, а если движется, то куда, с какой скоростью. Вся информация должна быть получена (можно сказать, высосана из пальца) путем анализа упругих волн, распространяющихся в воздухе, воде или в твердых телах (земле, древесине и т.д.).
Работа слухового анализатора человека не менее сложна, чем зрительного. Он обязан уметь оперативно разобраться в длинном потоке сложных звуковых колебаний, каким является наша обыденная речь. Животные также обладают довольно изощренным слухом. Малые африканские фламинго узнают по голосу своего ребятенка среди 50–100 тысяч таких же малышей, дожидающихся возвращения родителей.
Когда на нашей планете зарождалась жизнь, не было источников звука, способных передвигаться быстрее, чем распространялись звуковые волны. В этом и состояла огромная ценность звуковой информации. Она давала возможность заблаговременно получить достоверные сведения о существах, находящихся еще далеко. Значительно раньше, чем состоится личная встреча.
Периферический рецептор, воспринимающий звуковые волны, если описать его очень упрощенно (он расположен во внутреннем ухе), представляет собой миниатюрную арфу, с постепенно меняющейся длиной струн. Каждая струна отзывается, то есть начинает колебаться (и возбуждает соответствующую нервную клетку), лишь в ответ на звуковые волны определенной частоты в строгом соответствии со своей длиной.
У мозгового отдела слухового анализатора много общего со зрительным. На различных этажах мозга есть экранные структуры, в которых можно найти проекцию арфы – кохлеарного аппарата улитки. Поэтому высокие и низкие звуки анализируются в противоположных концах экрана. Только в коре каждого полушария не менее четырех проекций. На каждые 2 миллиметра проекции частота звуковых волн меняется на 1 октаву.
В слуховой системе долго не могли найти детекторов. Возможно, не то искали. Одним из первых был обнаружен детектор перемещения в пространстве. Он реагирует только на уменьшение интервала между звуками, приходящими в левое и правое ухо. Если мимо животного движется объект, производящий звуки, то пока он находится далеко слева, звуки в левое ухо приходят раньше, чем в правое. Постепенно этот интервал будет все короче и короче, пока звучащий объект не начнет удаляться вправо. Детектор, воспринимающий увеличение интервала между звуками, пока не обнаружен.
Детекторов расстояния известно три. Они реагируют на изменение интенсивности звуков. Для одних нейронов безразлично, усиливаются звуки или ослабевают. Видимо, этот детектор сторожевой. Он сообщает мозгу, что где-то недалеко находится зверь, который перемещается в пространстве.
Его сигналы вызывают настораживание остальных детекторов расстояния. Часть из них отвечает только на усиление звуков, то есть реагирует на приближение другого существа и прекращает импульсацию, как только оно начнет удаляться и звуки станут ослабевать. Другие воспринимают удаление звучащего существа, отвечая усилением электрических разрядов лишь на ослабление звуков.
В коре больших полушарий были обнаружены нейроны, реагирующие только на тоны строго определенной частоты, и три типа нейронов, откликающиеся на звуки с меняющейся частотой. Два – при изменении частоты только в каком-то одном направлении (возрастание или уменьшение), третий – в любом случае, лишь бы частота менялась.
Весьма загадочна функция «нейронов внимания». Они реагируют на звуки только в том случае, если животное рассматривает звучащий предмет. Может быть, их участие необходимо, когда животное должно выяснить и запомнить, что представляет собой объект, издающий новый, незнакомый звук. Возможно, это нейроны-скептики, не считающие достоверными и не обращающие внимания на те звуки, источник которых им неизвестен.
У насекомых детекторы звуков часто носят служебный характер, тотчас запуская специальные реакции животного (без предварительного обсуждения воспринятой информации мозгом). Так работает у ночных бабочек детектор обнаружения летучей мыши. Он воспринимает только ультразвуки. Если локационный луч охотящейся летучей мыши упрется в летящее насекомое, детекторы обнаружения, находящиеся в крыльях, мгновенно посылают команду мышцам, крылья складываются, и бабочка падает в траву.