Читаем без скачивания Сверхзвуковые самолеты - Эдмунд Цихош
Шрифт:
Интервал:
Закладка:
В самолетах изменяемой геометрии эту функцию, очевидно, может выполнять только один узел, обеспечивающий, кроме того, перемещение одних частей крыла относительно других. Это значительно усложняет задачу создания простого и работоспособного узла, поэтому при проектировании первых самолетов с изменяемой стреловидностью рассматривалось большое количество механизмов изменения геометрии по разным кинематическим схемам (принципам действия). По-видимому, наибольшее применение получили два относительно простых решения (рис. 1.53). Первое из них основано на выделении в узле специальных шарниров, воспринимающих по отдельности перерезывающие силы и изгибающий момент. Преимуществом этого решения является ограничение кинематики вращательным движением узла, а недостатком-необходимость применения дополнительного шарнира, воспринимающего перерезывающую силу. Такое решение использовано в самолетах F-111 и «Торнадо», а также предусмотрено в проекте сверхзвукового пассажирского самолета «Боинг» 2707. Второе решение основано на использовании одного шарнира с косыми поворотными пластинами, воспринимающими нагрузки обоих видов. Преимуществом этого решения является простота конструкции, а недостатком-одновременное появление вращательного и циклического поступательного перемещения. Конструкция такого типа использована в самолете F-14. Шарниры крыла должны свободно вращаться, поэтому в них обычно устанавливаются подшипники скольжения со слоем тефлона, существенно снижающего трение.
Вторым слабым местом в конструкции самолета изменяемой геометрии является система привода, состоящая из механизма, изменяющего положение подвижных частей крыла, и устройства, синхронизирующего эти перемещения. Эта система должна не только обеспечивать синхронное отклонение плоскостей крыла (обычно также механизации и элеронов), но и быть абсолютно надежной. С этой точки зрения система механизмов изменения положения должна приводиться в движение и воспринимать нагрузки от различных частей крыла по крайней мере двумя независимыми путями. В реализованных до настоящего времени системах применяются обычно два гидромотора, связанные между собой механически валом синхронизации поворота крыла и подкрыльных пилонов, что позволяет топливным бакам, бомбам, ракетам и т.п., подвешенным под крылом на пилонах, располагаться вдоль набегающего потока независимо от угла стреловидности. Такая система обычно дополняется управляющим блоком и шарнирно-вин- товыми исполнительными механизмами с соответствующими редукторами.
Гидромоторы работают в независимых гидравлических системах, поэтому в случае неисправности одной из них возможно нормальное отклонение крыла (с уменьшенной скоростью) при помощи вала синхронизации. В случае одновременного отказа обеих систем предусмотрена блокировка положения крыла. Если система работает нормально, то пилот может выбрать любое желаемое положение из всего диапазона отклонений, при этом соответствующая электронная приоритетная система обеспечивает правильный порядок действий во время изменения положения крыла. Управление положением крыла производится из кабины посредством специального рычага, направление перемещения которого совпадает с направлением перемещения передней кромки, или при помощи соответствующего электрического переключателя.
В зависимости от выбранной компоновочной схемы самолета и положения плоскости, разделяющей крыло на подвижные и неподвижные элементы, необходимо производить уплотнение соединений подвижных частей с неподвижными, а в случае, когда задние кромки заходят частично в фюзеляж,-уплотнение соединений крыло-фюзеляж. В самолете «Торнадо», например, применяется уплотнение в виде пневматических камер с наддувом, которые обеспечивают аэродинамическую «чистоту» соединений и малое интерференционное сопротивление. Камеры, изготовленные из упругого пластика, усиленного стекловолокном, не вносят дополнительных неблагоприятных влияний, например не вызывают флаттера крыла, не снижают ресурс самолета и т.д.
Даже из тех немногих проблем, которые перечислены выше, следует, что для реализации преимуществ самолетов с изменяемой геометрией крыла необходим тщательный анализ не только аэродинамических характеристик, функциональности и надежности каждого элемента системы и оборудования, но также весовых, прочностных и кинематических исследований элементов и агрегатов самолета. Только комплексное решение этих проблем может сделать самолет изменяемой геометрии эффективным оружием, послушным воле пилота, а в будущем, возможно, и надежным транспортным средством.
8. Самолеты вертикального взлета и посадки
В начале 50-х и конце 60-х годов проблема вертикального (или короткого) взлета и посадки наиболее часто обсуждалась на страницах специальных изданий. Этот факт станет понятным, если учесть, что одним из важнейших достоинств самолета как военного оружия в течение многих лет была максимальная скорость его горизонтального полета (для воздушного транспорта она и в обозримом будущем останется главным показателем с точки зрения пассажира), увеличению которой сопутствовал рост вертикальной скорости и высоты управляемого полета.
Ввод в эксплуатацию новых типов самолетов с максимальной скоростью, соответствующей М = 2,0-1-2,5, сопровождался ростом взлетной и посадочной скоростей до значений 250-350 км/ч, что потребовало удлинения взлетно-посадочной полосы и, следовательно, создания новых ВПП. Такой неблагоприятый оборот дела не удалось радикально исправить применением высокоэффективной механизации крыла, а позднее и крыла изменяемой геометрии. Оба эти способа позволили лишь смягчить ситуацию, поскольку отношение максимальной скорости к минимальной в самолетах обычного взлета и посадки не может регулироваться беспредельно. Для первых серийных сверхзвуковых самолетов это отношение составляло около 5-9 и возросло до 10 для самолетов второго поколения, а для самолетов с изменяемой стреловидностью крыла оно достигло 11,5.
Стало ясно, что необходимо изменить принттип взлета и посадки – вместо касательного относительно земли направления движения перейти по возможности к вертикальному посредством дополнения аэродинамической подъемной силы вертикальной составляющей тяги двигательной установки. В предельном случае тяга двигателей целиком может быть направлена вертикально, а ее величина-превышать вес самолета. Если при этом выполняются условия устойчивости и управляемости, то возможен подъем самолета при нулевой горизонтальной скорости. Таким образом родилась идея самолета вертикального взлета и посадки (ВВП) и самолета короткого взлета и посадки (КВП).
Конструктивная идея самолетов ВВП и КВП
Разработка самолетов ВВП началась впервые в 50-х годах, когда был достигнут соответствующий технический уровень турбореактивного и турбовинтового двига- телестроения, что вызвало повсеместную заинтересованность в самолетах этого типа как среди потенциальных пользователей, так и в конструкторских бюро. За десятилетия, прошедшие с тех пор, в мире были созданы десятки опытных самолетов ВВП разных систем. Большинство конструкций было изготовлено в 1-2 экземплярах, которые, как правило, терпели аварии уже во время первых испытаний, и дальнейших исследований над ними уже не проводилось. Большие надежды, которые связывались с такими самолетами, натолкнулись на серьезные практические трудности, и, по опубликованным данным, на Западе сейчас имеется единственный выпускаемый серийно околозвуковой самолет-штурмовик ВВП «Харриер» Р. 1127 британской фирмы «Хоукер-Сиддли» (изготавливается также по лицензии в США под индексом AV-8).
Техническая комиссия НАТО, огласившая в июне 1961 г. требования к истребителю-бомбардировщику вертикального взлета и посадки, дала тем самым определенный импульс развитию сверхзвуковых самолетов ВВП в западных странах. Предполагалось, что в 60-х-70-х годах странам НАТО потребуется около 5000 таких самолетов, из которых первые войдут в эксплуатацию уже в 1967 г. Прогноз такого большого количества продукции вызвал появление шести проектов самолетов: Р. 1150 английской фирмы «Хоукер-Сидд- ли» и западногерманской «Фокке-Вульф»; VJ-101 западногерманского Южного Объединения «EWR-Зюд» («Бельков», «Хейнкель», «Мессершмитт»); D-24 голландской фирмы «Фоккер» и американской «Рипаблик»; G-95 итальянской фирмы «Фиат»; «Мираж» III-V французской фирмы «Дассо» и F-104G в варианте ВВП американской фирмы «Локхид» совместно с английскими фирмами «Шорт» и «Роллс- Ройс».
Рис. 1.54. Самолеты вертикального взлета и посадки «Мираж-Бальзак» V-001 фирмы «Дас- со» (а) и VJ-101C-X2 объединения «EWR-Зюд» (б) во время наземных испытаний.
Еще до представления проектов на конкурс стало ясно, что он не состоится. Оказалось, что каждое государство имеет свою собственную, отличную от других концепцию будущего самолета и не согласится на монополию одной фирмы или группы фирм. Например, английские военные поддерживали не свои фирмы, а французский проект, Федеративная Республика Германии поддерживала проект фирмы «Локхид» и т.д. Судьбу конкурса предрешила, по-видимому, Франция, представители которой заявили, что независимо от результатов конкурса будут работать над своим проектом самолета «Мираж» III-V.