Категории
Самые читаемые

Читаем без скачивания Сверхзвуковые самолеты - Эдмунд Цихош

Читать онлайн Сверхзвуковые самолеты - Эдмунд Цихош

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 33 34 35 36 37 38 39 40 41 ... 122
Перейти на страницу:

Рис. 1.55. Расположение подъемной двигательной установки и элементов системы струйного (реактивного) управления самолета «Мираж- Бальзак» фирмы «Дассо».

В табл. 7 представлены характеристики четырех сверхзвуковых самолетов вертикального взлета и посадки, в том числе околозвукового самолета VJ-101C, развивающего М = 1,14 (по проекту М = 2,0). Сравнение показывает, что самолеты различаются аэродинамическими схемами, системами управления на различных этапах полета и принципами работы двигательных установок.

Появление отдельных двигателей для вертикального и горизонтального полета в самолетах «Мираж-Бальзак» (рис. 1.55) и «Мираж» III-V фирмы «Дассо» не было случайным. Этому послужили две причины. Первая из них определяется желанием использовать уже существующую конструкцию с минимальными изменениями. Вторая причина вытекает из сравнительной оценки преимуществ и недостатков двигательной установки такого типа. Разделение функций между двигателями позволяет выбрать оптимальные типы двигателей для весьма различных условий взлета-посадки и горизонтального полета, особенно на сверхзвуковой скорости.

Не менее важной является проблема безопасности во время зависания, так как в случае аварии одного из нескольких подъемных двигателей должна сохраняться возможность благополучного приземления. Параметры такой двигательной установки зависят главным образом от характеристик подъемных двигателей. Эти двигатели должны иметь малую удельную массу (по отношению к подъемной силе), малые размеры, высокую надежность и низкую стоимость. Выполнение этих требований оказывается возможным благодаря кратковременной работе двигателей-два раза на каждый полет по 30^0 с в ограниченном диапазоне скоростей и высот. Как следует из опубликованных данных, такая двигательная установка на самолете ВВП может быть эффективной только при условии создания подъемных двигателей с удельной массой не более 0,05 кг/даН. (Для сравнения напомним, что двигатели самолета «Мираж» III-V-02 имеют удельную массу 0,08 кг/даН.)

Рис. 1.56. Компоновочная схема самолета VJ-101C.

1-телеметрическое оборудование; 2-кабина пилота; 3-катапультируемое кресло; 4-створка воздухозаборника подъемных двигателей; 5-подъемные двигатели; 6 – подъемно-маршевые двигатели; 7-оси поворота подъемно-маршевых двигателей; 8-форсажная камера; 9-кольцевая щель дополнительного воздухозаборника; 10-передний топливный бак; 11 -задний топливный бак; 12 -привод поворота двигателей; 13 -элероны; 14-закрылки; 15 -руль направления; 16 -стабилизатор; 17 -передняя стойка шасси; 18-главные стойки шасси.

Проект самолета VJ-101C объединения «EWR-Зюд» (рис. 1.56) разрабатывался в других условиях. Вначале предполагалось, что это будет самолет-перехватчик, который заменит в 70-х годах самолет F-104G (позднее была принята программа «Панавиа»), но затем появились требования полета на малой высоте (использование самолета для нанесения ударов по наземным целям), что обусловило необходимость применения экономичной двигательной установки. В этой ситуации более выгодной оказалась комбинированная система, в которой часть двигателей используется только при взлете, посадке и на переходных режимах. Был разработан проект двигательной установки с двумя подъемными двигателями, расположенными вертикально за кабиной пилота, и четырьмя подъемно-маршевыми двигателями, помещенными в две поворотные гондолы, закрепленные на концах крыла. Выбор такой схемы двигательной установки продиктован следующими соображениями:

– во время взлета и посадки может быть использована тяга всех двигателей;

– можно применить форсирование в двигателях, установленных в гондолах, что повышает их эффективность ценой некоторого увеличения массы конструкции;

– отсутствуют потери тяги, которые имеют место в двигательных установках с отклонением реактивной струи газов;

– использование поворотных гондол упрощает переход в различные фазы полета;

– управление в режимах висения, вертикального взлета и посадки может быть легко реализовано путем дифференциального изменения тяги отдельных групп двигателей, благодаря чему не нужна специальная система струйного (реактивного) управления (применение которой вызывает усложнение конструкции и увеличение ее веса и снижение эффективности по тяге вследствие дополнительного расхода сжатого воздуха);

– отсутствие тяговых двигателей и их сопел в фюзеляже позволяет рациональнее использовать объем самолета, например разместить все топливо вблизи центра тяжести и упростить конструкцию главных опор шасси;

– изменение направления тяги двигателей дает возможность осуществить короткий взлет и посадку;

– влияние земли в режиме висения (приводящее к засасыванию выхлопных газов и повышению температуры) невелико, поскольку воздухозаборники двигателей в гондолах размещаются достаточно высоко;

– установка гондол на концах крыла в принятой аэродинамической схеме уменьшает нагруженность конструкции и ее массу, а также облегчает доступ при обслуживании.

Единственным существенным недостатком принятой системы двигательной установки является дополнительное сопротивление от гондол. Сравнение результатов исследования для такой компоновки и системы, в которой тяговые двигатели располагаются в фюзеляже, показало, что разница сопротивлений равна сопротивлению одной гондолы. Система двигательной установки с поворотными гондолами применима только в самолетах с крылом малого удлинения, поскольку подъем самолета с помощью сил, приложенных к концам длинных консолей крыла, связан с увеличением массы, так как при этом необходимо использовать соответственно более прочную и жесткую конструкцию.

Поворотные гондолы-одна из наиболее интересных особенностей самолета VJ-101C. Весовой анализ показывает, что механизм поворота гондол весит меньше, чем система отклонения реактивной газовой струи. В конструкции узла поворота использованы шарикоподшипник большого диаметра, встроенный в боковую стенку гондолы, и трубчатая ось, через которую подается необходимое питание. Гондолы поворачиваются гидроприводами, работающими в сдвоенной гидросистеме с насосами, размещенными непосредственно на двигателях. Установка разъемных соединений топливной и гидравлической систем и блока управления в плоскости концевых сечений крыла позволяет легко демонтировать гондолы как отдельные агрегаты. Запуск двигателей производится с помощью гидравлического стартера.

Существенную проблему при проектировании самолета вертикального взлета и посадки представляет выбор типа воздухозаборников, которые должны удовлетворять требованиям, относящимся к принципиально различным режимам полета. Одной из трудностей является запуск подъемных двигателей в горизонтальном полете при положительных углах атаки фюзеляжа, поскольку в районе воздухозаборника создается разрежение, а в районе сопла – повышенное давление. Задача решается с помощью больших щитков, расположенных на верхней и нижней поверхностях фюзеляжа, вызывающих движение воздуха, благоприятное для работы двигателей. Воздухозаборники основных подъемно- маршевых двигателей рассчитаны на сверхзвуковую скорость полета, поэтому на взлете, висении и посадке оказалось необходимым применение дополнительного воздухозаборника, который образуется при выдвижении передней части гондолы вперед одновременно с выпуском щитков и шасси. Щель, создаваемая при этом на поверхности гондолы, увеличивает площадь сечения воздухозаборника и благоприятно влияет на распределение скорости и давления воздушного потока на входе в компрессор даже при сильных горизонтальных порывах ветра.

В самолете XFV-12A фирмы «Норт Америкен» используется явление эжекции, т.е. всасывание окружающего воздуха каналами, расположенными в крыльях и горизонтальном оперении, под действием струи газов, выходящей из турбовентиляторного двигателя (рис. 1.57). На режимах висения и полета с малой скоростью управление самолетом осуществляется при помощи четырех работающих независимо эжекторов, создающих реактивную подъемную силу различной величины. При горизонтальном полете двигатель работает, как в обычном самолете, а при зависании и полете с малой скоростью вся струя выходящих газов направляется в эжекторы.

Рис. 1.57. Этапы полета и соответствующее им положение направляющих щитков эжекторов в самолете XFV-12A.

а-висение; б-короткий взлет и посадка; в-горизонтальный полет.

Реактивная подъемная сила эжекторов возрастает благодаря захвату воздуха газовой струей. Вследствие смешения этих потоков (в отношении 7,5:1) скорость и температура газовоздушной смеси на выходе из эжектора уменьшаются, а тяга возрастает примерно на 50%. Использованный в этом самолете принцип вертикального взлета еще мало изучен, несмотря на проведенные в последние годы NASA летные испытания модификации самолета DHC-8A «Буффало» фирмы «Де Хэвилленд Канада», снабженного реактивными закрылками (данные летных испытаний которого значительно отличались от результатов аэродинамических расчетов и продувок). При создании эжекторной системы были использованы исследования фирмы «Локхид», на опытном самолете которой XV-4A «Хаммингбёд» («Колибри»), совершившем первый полет в 1962 г., подъемная сила создавалась в результате эжекции воздуха струей газов от двух турбореактивных двигателей. Однако аэродинамика этого самолета была другой, так как эжекторы, находящиеся в средней части фюзеляжа, не влияли на обтекание крыла и горизонтального оперения и не использовались для управления самолетом.

1 ... 33 34 35 36 37 38 39 40 41 ... 122
Перейти на страницу:
На этой странице вы можете бесплатно скачать Сверхзвуковые самолеты - Эдмунд Цихош торрент бесплатно.
Комментарии