Категории
Самые читаемые
💎Читать книги // БЕСПЛАТНО // 📱Online » Научные и научно-популярные книги » Биология » Кризис аграрной цивилизации и генетически модифицированные организмы - Валерий Глазко

Читаем без скачивания Кризис аграрной цивилизации и генетически модифицированные организмы - Валерий Глазко

Читать онлайн Кризис аграрной цивилизации и генетически модифицированные организмы - Валерий Глазко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 33 34 35 36 37 38 39 40 41 ... 55
Перейти на страницу:

Дальнейшее развитие фито- и биоремедиации — это комплексная проблема, связанная, в частности, с использованием растений и ризосферных микроорганизмов. Растения будут с успехом извлекать из почвы тяжелые металлы, а ризосферные бактерии — разлагать органические соединения, повышая эффективность фиторемедиации, способствуя росту растений, а растения — развитию обитающих на их корнях микроорганизмов.

Загрязнение окружающей среды можно считать заболеванием экосистем, а биоремедиацию — лечением. Ее следует рассматривать и как профилактику многочисленных заболеваний человека, вызываемых загрязнением среды. По сравнению с другими методами очистки, этот гораздо дешевле. При рассеянных загрязнениях (пестициды, нефть и нефтепродукты, тринитротолуол, которым загрязнены многочисленные земли), ему нет альтернативы. В очистке окружающей среды от загрязнений важно правильно выделить приоритеты, минимизируя риски, связанные с тем или иным загрязнением, и учитывая свойства конкретного соединения и его влияние прежде всего на здоровье человека. Необходимы законодательные акты и правила, регламентирующие интродукцию в окружающую среду ГМ микроорганизмов, с которыми связаны особые надежды на очистку от любых загрязнителей. В отличие от промышленной биотехнологии, где можно строго контролировать все параметры технологического процесса, биоремедиация проводится в открытой системе, где такой контроль затруднен. В известной мере это всегда «ноу-хау», своего рода искусство.

В полной мере преимущество микроорганизмов при очистке от нефтепродуктов удалось продемонстрировать, когда после катастрофы танкера 5000 м3 нефти вылилось в море у берегов Аляски. Около 1,5 тыс. км береговой линии оказалось загрязнено нефтью. К механической очистке привлекли 11 тыс. рабочих и разнообразное оборудование (это обходилось в 1 млн долл. в день). Но был и другой путь: параллельно для очистки берега в почву вносили азотное удобрение, что ускорило развитие природных микробных сообществ. Это в 3-5 раз ускорило разложение нефти. В итоге загрязнение, последствия которого, по расчетам, могли сказываться и через 10 лет, полностью устранили за 2 года, затратив на биоремедиацию менее 1 млн долл.

Развитие биоремедиации, технологий и способов ее применения требуют междисциплинарного подхода и сотрудничества специалистов в области генетики и молекулярной биологии, экологии, и других дисциплин. Таким образом, направления использования генной инженерии очень разнообразны и обширны, а некоторые из них фантастичны и в то же время весьма перспективны по достижимости результатов.

Исследование реакции живых организмов на изменения окружающей среды чрезвычайно важно для оценки влияния этих изменений, особенно имеющих антропогенное происхождение, на биоразнообразие, сохранение которого является важнейшей задачей человеческой цивилизации.

По данным Организации экономического сотрудничества и развития (ОЭСР), потенциальный рынок биоремедиации составляет более 75 млрд долл. Ускоренное внедрение биотехнологий для защиты окружающей среды вызвано, в частности, тем, что они гораздо дешевле других технологий очистки. По мнению ОЭСР, биоремедиация имеет локальное, региональное и глобальное значение, и для очистки будут все шире применять как природные организмы, так и ГМО.

Биотопливо

С учетом ограниченных запасов ископаемой энергии особое внимание в настоящее время должно быть уделено возможности использования новых видов топлива — метана, водорода, и др., а также возобновляемых источников энергии. Однако в общем энергетическом балансе такие экологически безопасные источники энергии, как энергия Солнца, морских течений, воды, ветра и др., могут составить не более 20% от их общего производства.  В этой  ситуации одним  из наиболее перспективных возобновляемых источников энергии становится биомасса, методы использования которой постоянно совершенствуются. При этом наряду с непосредственным сжиганием широкое применение получают процессы биоконверсии, например, спиртовая и анаэробная ферментация, термоконверсии, газификация, пиролиз и пр. Так, например, в Бразилии, в бассейне Амазонки, расширяются площади под культурой маниоки и сахарного тростника для производства спирта, используемого в качестве добавки к топливу, взамен импортируемой нефти. С этой же целью начата эксплуатация естественных зарослей черного лозняка, занимающего в северо-восточных районах страны около 6 млн. га.

Если в Индии, Китае и некоторых других странах сельскохозяйственные отходы утилизируются с целью получения биогаза, то в Швеции, Германии, Бразилии, США, Канаде сельскохозяйственные культуры специально выращивают для производства топливного спирта этанола. Эффективным заменителем ископаемого топлива является масло рапса и сурепицы, яровые формы которых удается возделывать в России вплоть до Полярного круга. Источником растительных масел для получения биотоплива могут быть также соя, подсолнечник и другие культуры. Для получения топливного этанола в Бразилии все шире используют сахарный тростник, а в США — кукурузу.

Коэффициент энергоотдачи (отношение суммарного энергетического эквивалента полезной продукции ко всем энергетическим затратам на ее производство) составляет для сахарной свеклы — 1,3; кормовых трав — 2,1; рапса — 2,6; пшеничной соломы — 2,9. При этом за счет использования в качестве исходного сырья 60 ц соломы пшеницы с каждого гектара можно получить 10 тыс. м3 генераторного газа, или 57,1 ГДж.

В связи с быстрым истощением природных ресурсов нефти, газа и угля во многих странах особое внимание уделяется так называемым нефтеносным растениям — Euphorbia lathyris (молочай масличный) и E.tirucallii из семейства молочайных (Kupharbiacea), содержащих латекс, состав терпенов которого приближается по своим характеристикам к высококачественной нефти. При этом урожайность сухой массы указанных растений составляет около 20 т/га, а выход нефтеподобного продукта в условиях Северной Калифорнии (т.е. в зоне 200-400 мм осадков в год) может достичь 65 баррелей сырья с 1 га. Следовательно, более выгодно выращивать растительные заменители ископаемого топлива, поскольку с каждого гектара можно получать более 3600 нефтедолларов, что в зерновом эквиваленте составит 460 ц/га, т.е. в 20 раз больше средней урожайности пшеницы в США и Канаде. Если вспомнить известный лозунг США «за каждый баррель нефти бушель зерна», то при сегодняшних ценах на нефть, газ и зерно это означает обмен — 1 зернодоллар приблизительно на 25 нефтедоллара. Конечно, баррель нефти не заменит бушель зерна в прямом смысле, и далеко не в каждой зоне удастся возделывать указанные виды растений. Но получение альтернативных видов топлива за счет целенаправленной селекции растений превращает и техногенно-энергетический компонент высокопродуктивных агрофитоценозов в воспроизводимый и экологически безопасный фактор интенсификации растениеводства, и, конечно, это один из самых безболезненных выходов для таких государств как Украина — все в больших масштабах использовать растения в качестве возобновляемых ресурсов, в том числе энергии (биодизельное топливо, смазочные материалы и пр.). К примеру, производство озимого рапса уже обеспечивает соотношение расхода и выхода энергии 1:5.

ГМО и биоразнообразие

Принципиальным моментом современного этапа селекции является отчетливое понимание того, что базой для ее развития, в том числе и с использованием генно-инженерных приемов, является биоразнообразие.

Эволюция растительного царства шла по пути умножения числа видов и их «экологической специализации». Этот факт указывает на опасность снижения биологического (генетического) разнообразия в биосфере в целом и в агроэкосистемах в частности. Резкое сужение видового и генетического разнообразия уменьшило не только устойчивость растениеводства к капризам погоды и изменениям климата, но и возможность с большей эффективностью утилизировать солнечную энергию и другие неисчерпаемые ресурсы природной среды (углерод, кислород, водород, азот и другие биофильные элементы), которые, как известно, составляют 90-95% сухих веществ фитомассы. Кроме того, это приводит к исчезновению генов и генных комбинаций, которые могли бы быть использованы в селекционной работе будущего.

Одна и та же площадь, подчеркивал Ч. Дарвин (1859), может обеспечить тем больше жизни, чем разнообразнее населяющие ее формы. Для каждого культивируемого вида растений, в связи со своей эволюционной историей и специфичной работой селекционера, характерен свой «агроэкологический паспорт», т.е. приуроченность величины и качества урожая к определенному сочетанию температуры, влажности, освещения, содержания элементов минерального питания, а также их неравномерное распределение во времени и пространстве. Поэтому снижение биологического разнообразия в агроландшафтах уменьшает в том числе и возможность дифференцированного использования ресурсов природной среды, а, следовательно, и реализации дифференциальной земельной ренты I и II типа. Одновременно ослабляется и экологическая устойчивость агроэкосистем, особенно в неблагоприятных почвенно-климатических и погодных условиях.

1 ... 33 34 35 36 37 38 39 40 41 ... 55
Перейти на страницу:
На этой странице вы можете бесплатно скачать Кризис аграрной цивилизации и генетически модифицированные организмы - Валерий Глазко торрент бесплатно.
Комментарии