Категории
Самые читаемые
💎Читать книги // БЕСПЛАТНО // 📱Online » Научные и научно-популярные книги » Прочая научная литература » Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - Лиза Рэндалл

Читаем без скачивания Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - Лиза Рэндалл

Читать онлайн Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - Лиза Рэндалл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 59 60 61 62 63 64 65 66 67 ... 124
Перейти на страницу:

Так как хиггсовская частица взаимодействует с тяжелыми частицами, масса которых достигает масштаба масс ТВО, ряд путей, по которым она перемещается, включает вакуум, выплевывающий виртуальную тяжелую частицу и ее античастицу, так что хиггсовская частица в процессе движения на время превращается в эти частицы (рис. 61). Тяжелые частицы без предупреждения возникают и исчезают в вакууме и влияют на движение хиггсовской частицы. Они — преступники, ответственные за большие квантовые поправки.

Квантовая механика утверждает, что если мы хотим определить массу, которой реально обладает хиггсовская частица, нам нужно добавить такие пути с виртуальными частицами к единственному пути без этих частиц. Проблема состоит в том, что пути, содержащие виртуальные тяжелые частицы, порождают вклады в массу хиггсовской частицы того же порядка, что и массы тяжелых частиц в ТВО, т. е. на тринадцать порядков величины больше желаемой массы. Все эти колоссальные квантово-механические вклады виртуальных тяжелых частиц нужно добавить к классическому значению массы хиггсовской частицы, чтобы получить физическое значение, получаемое при измерении и равняющееся приблизительно 250 ГэВ, что приведет к правильным значениям масс слабых калибровочных бозонов. Это означает, что хотя каждый отдельный вклад ТВО в массу на тринадцать порядков больше, чем нужно, когда мы сложим все эти огромные вклады, часть из которых положительна, а другая часть отрицательна, мы получим примерно 250 ГэВ. Если с хиггсовской частицей взаимодействует хотя бы одна виртуальная тяжелая частица, неизбежно возникает проблема.

Если, как в предыдущей главе, мы проведем аналогию между виртуальными частицами и сотрудниками некоего учреждения, например, Службой иммиграции и натурализации США, работа которых состоит в том, чтобы выявлять и откладывать документы от подозрительных лиц, то окажется, что вместо этого они занимаются тщательным изучением всех документов от всех лиц. Вместо двухуровневой системы, в которой часть документов быстро рассматривается, а другая часть задерживается, все документы рассматриваются одинаково. Аналогично, механизм Хиггса требует, чтобы «учреждение» виртуальных частиц оставляло часть частиц тяжелыми, но позволяло другим, в том числе хиггсовской частице, быть легкими. Вместо этого квантовые пути, включающие виртуальные частицы, как сверхусердные работники, дают сравнимые вклады в массы всех частиц. Итак, мы ожидаем, что все частицы, в том числе хиггсовская частица, должны быть такими же тяжелыми, как масштаб масс ТВО.

Если не привлекать новую физику, единственный (и очень неудовлетворительный) путь решения проблемы чрезмерно большой массы хиггсовской частицы заключается в предположении, что ее классическая масса принимает точно такое значение (оно может быть и отрицательным), которое сократит большую квантовую поправку к массе хиггсовской частицы. Параметры теории, определяющей массы частиц, должны быть таковы, что все вклады суммируются, приводя к очень малому числу, даже несмотря на то, что каждый отдельный вклад очень большой. Это и есть процесс тонкой настройки, который упоминался в предыдущем разделе.

Такая схема потенциально возможна, но крайне маловероятно, что она имеет место в действительности. Ведь это не просто вопрос о небольшой подгонке параметра, с тем чтобы получить правильную массу. Требуемая подгонка колоссальна и столь же колоссально точна: любой параметр, имеющий точность меньше тринадцати знаков, приведет к резко неправильным результатам. Уточним, что такая неестественная подгонка не имеет отношения к вопросу о точном измерении какой-то величины, например скорости света. Обычно качественные предсказания не зависят от конкретных значений параметра. Только одно значение будет приводить к точной величине, которую мы измеряем, но мир не сильно изменился бы, если бы этот параметр принял чуть отличающееся значение. Если бы ньютоновская постоянная тяготения (определяющая интенсивность гравитации) имела значение, отличающееся от известного всего на 1 %, не произошло бы никаких резких изменений.

С другой стороны, в ТВО достаточно малого изменения параметра для того, чтобы полностью разрушить как качественные, так и количественные предсказания теории. Физические следствия значения массы хиггсовской частицы, нарушающей электрослабую симметрию, невероятно чувствительны к значению параметра. Практически для всех значений этого параметра не существует иерархии между массой ТВО и масштабом массы слабых взаимодействий, и строение мира и жизнь, покоящиеся на этой иерархии, были бы невозможны. Если бы этот параметр сдвинулся бы всего на 1 %, масса хиггсовской частицы была бы намного больше. Тогда массы слабых калибровочных бозонов, а также массы всех других частиц были бы много больше, так что следствия Стандартной модели не имели бы ничего общего с тем, что мы видим.

Проблема иерархии в физике частиц

В предыдущем разделе было рассказано о великой загадке — проблеме иерархии в ТВО. Но истинная проблема иерархии еще хуже. Хотя ТВО первая привлекла внимание физиков к проблеме иерархии, виртуальные частицы будут генерировать чересчур большие вклады в массу хиггсовской частицы даже в теории без частиц с массой ТВО. Даже Стандартная модель находится под подозрением.

Дело в том, что теория, содержащая Стандартную модель в комбинации с теорией тяготения, содержит два очень различающихся энергетических масштаба. Один — это масштаб энергии слабых взаимодействий, равный 250 ГэВ, т. е. энергия, при которой происходит нарушение электрослабой симметрии. Если энергия частиц меньше этого масштаба, становятся явными явления нарушения электрослабой симметрии, а слабые калибровочные бозоны и элементарные частицы имеют массу.

Другим уровнем энергии является планковский масштаб, который на шестнадцать порядков величины, т. е. в десять миллионов миллиардов (1016) раз, больше, чем масштаб энергии слабых взаимодействий. Планковский масштаб энергий определяет интенсивность гравитационных взаимодействий: закон Ньютона утверждает, что интенсивность обратно пропорциональна квадрату этой энергии. И так как интенсивность тяготения мала, планковский масштаб масс (связанный с планковским масштабом энергии формулой E = mc2) большой. Огромный планковский масштаб масс эквивалентен необычайно слабому тяготению.

До сих пор планковский масштаб масс не возникал в наших обсуждениях физики частиц, так как тяготение настолько мало, что в большинстве относящихся к физике частиц вычислений им можно было спокойно пренебречь. Но именно на этот вопрос хотят получить ответ физики-частичники: почему тяготение столь слабо, что им можно пренебречь в вычислениях по физике частиц? Другой способ сформулировать проблему иерархий состоит в том, чтобы спросить, почему планковский масштаб масс столь огромен, почему он в десять миллионов миллиардов раз больше, чем массы, относящиеся к масштабам физики частиц, которые меньше нескольких сотен ГэВ?

Чтобы дать вам пищу для сравнения, рассмотрим гравитационное притяжение между двумя частицами малой массы, например, между парой электронов. Гравитационное притяжение примерно в сто миллионов триллионов триллионов триллионов раз слабее электрического отталкивания между этими частицами. Два типа сил будут сравнимы, если электроны будут тяжелее в десять миллиардов триллионов раз. Это колоссальное число, оно сравнимо с тем, сколько раз вы сможете приложить остров Манхеттен непрерывной цепочкой на расстоянии, равном размеру видимой Вселенной.

Планковский масштаб масс неизмеримо больше, чем масса электрона и массы всех других известных нам частиц, и это указывает на то, что тяготение намного слабее других известных взаимодействий. Но почему должно быть такое огромное расхождение между интенсивностями большинства взаимодействий, или эквивалентно, почему планковский масштаб масс настолько огромен по сравнению с массами известных частиц?

Для специалистов по физике частиц трудно смириться с огромным отношением планковского масштаба масс к слабому масштабу масс, составляющим величину порядка десяти миллионов миллиардов. Это отношение больше, чем число минут, прошедших с момента Большого взрыва; оно в тысячу раз больше, чем число детских шариков, которые можно выложить от Земли до Солнца. Это число более чем в сто раз больше числа центов в бюджетном дефиците США! Почему же две массы, описывающие одну и ту же физическую систему, должны настолько различаться?

Если вы не специалист по физике частиц, вам может показаться, что все это не слишком существенная проблема, даже если эти числа очень велики. В конце концов, мы не обязаны объяснять все, и две массы могут быть разными без всяких особых причин. Но ситуация на самом деле намного хуже, чем кажется. Речь идет не только о существовании необъясненного огромного отношения масс. В следующем разделе мы увидим, что в рамках квантовой теории поля любая частица, взаимодействующая с хиггсовской частицей, может участвовать в виртуальном процессе, приводящем к росту массы хиггсовской частицы до значения порядка планковского масштаба масс 1019 ГэВ.

1 ... 59 60 61 62 63 64 65 66 67 ... 124
Перейти на страницу:
На этой странице вы можете бесплатно скачать Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - Лиза Рэндалл торрент бесплатно.
Комментарии