Читаем без скачивания Западноевропейская наука в средние века: Общие принципы и учение о движении - Виолетта Гайденко
Шрифт:
Интервал:
Закладка:
78
Подробное обсуждение вопроса дано в работах [133; 138; 157].
79
Об этом пишет В. П. Зубов в статье «Трактат Николая Орема “О конфигурации качеств”» [32, 612—613].
80
Еще в средние века за этим научным направлением закрепилось название «вычисления» (calculationes) —термин, зафиксированный в названии сочинения Ричарда Суайнсхеда «Книга вычислений» (Liber calculationum).
81
По-видимому, прав В. С. Широков, указывая, что критическая позиция А. Майер в отношении мертонских результатов была реакцией на слишком оптимистические оценки П. Дюэма (см.: [66, 61]).
82
То, что интенсия и ремиссия мыслятся Суайнсхедом как два противоположно направленных движения, очень хорошо видно из его доказательства теоремы о среднем градусе, анализ которой будет дан ниже. «Прежде всего доказывается, что все, составленное из двух неравных, является двойным по отношению к среднему между ними, как, например, составленное из 8 и 4 является двойным к 6. Ведь если не так, то положим, что а больше b и с — среднее между ними. И пусть а уменьшается до с, а b возрастает до с равно быстро (equevelociter). Тогда в конце составное из а и b будет двойным к с, потому что а и b будут равны тогда между собой. Но составное из а и b постоянно будет таким, как в конце, так как сколько одно приобретает, столько другое утрачивает. Следовательно, составное из а и b теперь есть двойное к с, что и требовалось доказать» (отрывок из трактата «О правилах локального движения» «Книги вычислений» Ричарда Суайнсхеда» цит. по: [82, 298]).
83
Понятие последовательности в современной математике является вторичным по отношению к понятию натурального ряда, обозначая множество значений некоторой функции, аргумент которой пробегает натуральный ряд чисел. В то же время, как показывает анализ конструктивной процедуры порождения натурального ряда чисел, чтобы задать этот ряд, необходимо воспользоваться особого рода операцией — «следования за»; тем самым идея последовательного полагания отдельных моментов (элементов) фактически признается первичной, базисной интуицией математики. Вот эту интуицию, с трудом поддающуюся (несмотря на всю свою очевидность и простоту) выражению, мы и подразумеваем, употребляя (за неимением лучшего) привычный математический термин «последовательность».
84
Термин «мгновенная скорость» — velocitas instantanea — в средневековой кинематике использовался исключительно для характеристики неравномерного движения, в то время как intensio velocitatis относилось к любому движению.
85
Галилей, введя аналогичное определение, специально подчеркивал необходимость такого уточнения (см.: [21]).
86
Интенсия движения (intensio motus) в данном контексте является синонимом не просто скорости, как в случае, где необходимо различить экстенсию и интенсню, а другого «качества» движения — ускорения. Соответственно термин velocitas, если он употребляется в сочетании с термином intensio motus в указанном значении (как в данной цитате — в словах: «в интенсии движения скорость оценивается»), означает степень ускорения,
87
В английском переводе М. Кладжета [156, 244], где вместо «интенсии движения» (intensio motus) стоит слово «ускорение», а вместо «движения» (motus) — скорость, указанный смысловой оттенок оказался утраченным.
88
Это высказывание принадлежит, по-видимому, известному схоласту XIV в. Марсилию Ингенскому, который предположительно являлся автором трактата, изданного в сочинениях Дунса Скота: Marsilius Inghen (?). Quaestiones in octo libros physicorum Aristotelis — цит. по: [82, 215].
89
Ricardus Swineshead. Liber calculationum. Regule de motu locali. Цит. по: [82. 298J.
90
Не случайно П. Дюэм назвал схоластов XIV в. «предшественниками» Галилея.
91
А. Койре в статье «Галилей и научная революция XVII века» пишет: «…Аристотелевская физика — это очень строго продуманная и очень связная система теоретического знания, которая, имея весьма глубокие философские основания, находится еще и в превосходном согласии с опытом…» [115, 5]. См. также: [98, 83—84].
92
Проблему измерения, как она решалась в процессе становления классической науки, Койре подробно разбирает в работе Du monde de l’«a-peu-pres» a l'Universe de la précision J112, 311—329]. Перевод этой статьи под заглавием «От мира “приблизительности” к универсуму прецизионности» см. в [40, 109—127].
93
«Здравый смысл и есть, и всегда был средневековым и аристотелевским» [115, 5].
94
В историко-научной литературе было подвергнуто справедливой и беспощадной критике ходячее представление о том, будто основная заслуга Галилея состояла в обращении от схоластических «умствований» к эмпирическому исследованию природы (см., напр.: [111]); в советской литературе подробный и аргументированный разбор (и опровержение) указанной точки зрения дан А. В. Ахутиным в книге «История принципов физического эксперимента от античности до XVII века» [10].
95
Галилео Галилей. Беседы и математические доказательства, касающиеся двух новых отраслей науки [21, 235].