Читаем без скачивания Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - Лиза Рэндалл
Шрифт:
Интервал:
Закладка:
Установка, расположенная в подвале физического факультета Вашингтонского университета, получила название эксперимента Эт-Ваш (Еӧt-Wash). Такое название напоминает имя знаменитого венгерского физика, изучавшего гравитацию, барона Роланда фон Этвеша, а с другой стороны, место проведения эксперимента (Вашингтон). Установка группы Эт-Ваш изображена на рис. 76. Она состоит из кольца, подвешенного над двумя притягивающими дисками, расположенными на небольшом расстоянии друг над другом. В кольце, а также в верхнем и нижнем дисках просверлены отверстия, настроенные так, что если закон Ньютона верен, то кольцо не будет поворачиваться. Однако, если существуют дополнительные измерения, разница в гравитационном притяжении между двумя дисками не согласовалась бы с законом Ньютона, и кольцо повернулось бы.
Адельбергер и Хекель не обнаружили никакого закручивания и заключили, что на тех расстояниях, которые они могли изучить, никаких эффектов, связанных с дополнительными измерениями (или иных) и модифицирующих силу тяготения, нет.
Их эксперимент измерил гравитационную силу на расстояниях, меньших, чем когда-либо это удавалось ранее, и установил, что закон Ньютона применим во всем интервале расстояний вплоть до десятой доли миллиметра. Это означало, что дополнительные измерения, даже те, для которых частицы Стандартной модели закреплены на бране, не могут быть размером с миллиметр, как предлагали АДД. Они должны быть по меньшей мере в десять раз меньше.
Примечательно, что измерения миллиметрового размера запрещены также наблюдениями в окружающем нас космическом пространстве. Квантово-механическое соотношение неопределенностей связывает миллиметр с энергией всего лишь порядка 10-3 эВ, а десятую долю миллиметра — с энергией порядка 10-2 эВ, иными словами, с очень малой энергией, например, на много порядков меньшей, чем требуется для рождения электрона.
Частицы с такой малой массой могли бы быть обнаружены в окружающем нас космическом пространстве и в звездных телах, таких как сверхновые или Солнце. Эти частицы были бы настолько легкими, что если бы они существовали, их могла бы рождать горячая сверхновая. Так как мы знаем, насколько быстро охлаждается сверхновая, и понимаем механизм охлаждения (за счет испускания нейтрино), мы знаем, что не может испускаться слишком большого количества других частиц малой массы. Если энергия теряется каким-то иным способом, скорость охлаждения была бы слишком большой. В частности, гравитоны не могут унести слишком много энергии. Рассуждая таким образом, физики показали (независимо от земных экспериментов), что дополнительные измерения должны быть меньше примерно одной сотой миллиметра.
Однако следует иметь в виду, что как бы нас не впечатлял факт отсутствия отклонений от закона гравитации на миллиметровых расстояниях, этот тест непригоден для проверки многих других моделей с дополнительными измерениями. Следует помнить, что только модели с двумя большими дополнительными измерениями приводят к эффектам, которые могли бы быть видимыми в миллиметровом масштабе. Если теория с более чем двумя большими дополнительными измерениями решает проблему иерархии (или если одна из моделей, которые мы рассмотрим в следующей главе, применима к нашему миру), отклонение от закона Ньютона произойдет только на много меньших расстояниях.
Мы не знаем достоверно, на что похоже гравитационное притяжение между двумя телами, находящимися на расстоянии одной десятой миллиметра друг от друга. Никто еще этого никогда не проверял. Так что мы не знаем, откроются ли дополнительные измерения на расстоянии одной десятой миллиметра, что, если подумать, не так уж и мало. Относительно большие дополнительные измерения, хотя и не такие большие, как миллиметр, остаются правдоподобной возможностью. Чтобы проверить такие модели, нам следует подождать коллайдерных тестов. О них речь пойдет в следующем разделе.
Поиски больших дополнительных измерений на коллайдереКоллайдеры частиц больших энергий хорошо приспособлены для открытия частиц КК, происходящих из больших дополнительных измерений, даже если таких измерений больше двух. В моделях АДД больших дополнительных измерений КК-партнеры гравитона всегда невероятно легкие. Если предположение о больших измерениях применимо к реальному миру, КК-партнеры гравитона должны быть достаточно легкими, чтобы рождаться на ускорителях, независимо от того, сколько имеется дополнительных измерений. Отсюда следует, что даже если размеры измерений меньше миллиметра, современные и будущие поиски на ускорителях должны быть способны их открыть. Современные коллайдеры производят более чем достаточное количество энергии, чтобы создать такие частицы малой массы. На самом деле, если бы единственной существенной величиной была энергия, частицы КК уже рождались бы в изобилии.
Однако здесь возникает загвоздка. КК-партнеры гравитона взаимодействуют чрезвычайно слабо, на самом деле, настолько же слабо, как сам гравитон. Так как взаимодействия гравитона столь пренебрежимо малы, что гравитоны никогда не рождались или детектировались на коллайдерах с измеримой вероятностью, это тем более относится к КК-партнеру гравитона.
Но возможности детектирования частиц КК из дополнительных измерений на самом деле значительно более перспективны, чем это могло показаться вам из сделанной унылой оценки. Дело в том, что если предложение АДД верно, должно быть так много легких КК-партнеров гравитона, что вместе они могут оставить детектируемое свидетельство своего существования. Если сценарий больших измерений верен, то, несмотря на очень редкое рождение отдельных частиц КК, вероятность рождения одной из большого количества легких частиц КК будет измеримо велика. Например, если существует два дополнительных измерения, примерно сто миллиардов триллионов мод КК будут достаточно легкими для того, чтобы рождаться на коллайдере, работающем на энергии порядка ТэВ. Вероятность рождения хотя бы одной из этих частиц будет достаточно велика, даже если вероятность рождения любой отдельно взятой частицы будет очень малой.
Дело обстоит так, как будто вам был сделан намек на что-то в такой тонкой манере, что когда вы в первый раз его услышали, вы не приняли его близко к сердцу. Но после этого пятьдесят человек повторили то же самое. Даже если вы не придали большого значения услышанному в первый раз сообщению, на пятидесятый раз сообщение отложилось у вас в мозгу. Аналогично, хотя легкие частицы КК достаточно легки, чтобы рождаться на современных ускорителях, они взаимодействуют столь слабо, что мы не можем заметить каждую отдельную частицу. Однако, когда ускоритель достигает достаточно высокой энергии, чтобы рождать много таких частиц КК, они оставляют за собой наблюдаемые сигналы.
Если идея АДД верна, то Большой адронный коллайдер (БАК), который будет изучать энергии масштаба ТэВ, сможет рождать частицы КК с измеримой вероятностью. Это может звучать, как счастливое совпадение, — почему, собственно, энергия порядка ТэВ должна иметь отношение к вероятностям рождения частиц КК, когда ни массы частиц КК, ни масса, определяющая интенсивность взаимодействия частиц КК (т. е. МPl), не равны ТэВ? Ответ состоит в том, что энергия порядка ТэВ определяет интенсивность гравитации в пространстве с дополнительными измерениями, а эта гравитация в конце концов определяет, что будет производить коллайдер. Так как взаимодействия многих КК-партнеров гравитона эквивалентны взаимодействию одного гравитона в пространстве с дополнительными измерениями, а такой гравитон сильно взаимодействует при энергиях порядка ТэВ, сумма всех вкладов всех частиц КК должна быть также важной на этом масштабе.
Экспериментаторы уже ищут частицы КК на Тэватроне в Фермилабе. Хотя Тэватрон не достигает энергий, которые будут доступны БАК, он достигает энергий, при которых имеет смысл начать поиск. Но БАК сделает это лучше, и имеет значительно больше шансов обнаружить АДД-частицы КК, если они существуют.
Как будут выглядеть эти частицы? Ответ состоит в том, что соударения, порождающие КК-партнеров гравитона, будут выглядеть как обычные для коллайдера события, за исключением того, что будет казаться, что теряется энергия. На БАК, где сталкиваются два протона, может произойти рождение частицы Стандартной модели и КК-партнера гравитона. Например, частицей Стандартной модели может быть глюон; протоны испытают соударение, образуя виртуальный глюон, а этот виртуальный глюон может, в свою очередь, превратиться в реальный физический глюон и КК-партнер гравитона.
Однако любая индивидуальная частица КК будет взаимодействовать слишком слабо для того, чтобы ее можно было обнаружить; напомним, что КК-партнеры гравитона взаимодействуют очень слабо, и их можно обнаружить только потому, что их очень много. Но поскольку детектор зарегистрирует глюон, или, более аккуратно, струю (см. гл. 7), окружающую глюон, событие, в котором родится КК-партнер гравитона, будет записано, даже если сам КК-партнер гравитона не будет зафиксирован. Ключ к идентификации события, как произошедшего в пространстве с дополнительными измерениями, будет состоять в том, что невидимый КК-партнер унесет энергию в дополнительные измерения, так что будет казаться, что энергия потерялась. Изучая события с одиночными струями, в которых энергия испущенного глюона меньше, чем начальная энергия соударения, экспериментаторы могут заключить, что они родили КК-партнера гравитона (рис. 77). Это аналогично тому, как Паули предсказал существование нейтрино (см. гл. 7).